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Abstract

This paper is a review of results which have been recently obtained by applying mathematical concepts
drawn, in particular, from di!erential geometry and topology, to the physics of Hamiltonian dynamical
systems with many degrees of freedom of interest for statistical mechanics. The "rst part of the paper
concerns the applications of methods used in classical di!erential geometry to study the chaotic dynamics of
Hamiltonian systems. Starting from the identity between the trajectories of a dynamical system and the
geodesics in its con"guration space, when equipped with a suitable metric, a geometric theory of chaotic
dynamics can be developed, which sheds new light on the origin of chaos in Hamiltonian systems. In fact, it
appears that chaos can be induced not only by negative curvatures, as was originally surmised, but also by
positive curvatures, provided the curvatures are #uctuating along the geodesics. In the case of a system with
a large number of degrees of freedom it is possible to approximate the chaotic instability behaviour of the
dynamics by means of a geometric model independent of the dynamics, which allows then an analytical
estimate of the largest Lyapunov exponent in terms of the averages and #uctuations of the curvature of the
con"guration space of the system. In the second part of the paper the phenomenon of phase transitions is
addressed and it is here that topology comes into play. In fact, when a system undergoes a phase transition,
the #uctuations of the con"guration-space curvature, when plotted as a function of either the temperature or
the energy of the system, exhibit a singular behaviour at the phase transition point, which can be qualitatively
reproduced using geometric models. In these models the origin of the singular behaviour of the curvature
#uctuations appears to be caused by a topological transition in con"guration space, which corresponds to
the phase transition of the physical system. This leads us to put forward a topological hypothesis (TH). The
content of the TH is that phase transitions would be related at a deeper level to a change in the topology of
the con"guration space of the system. We will illustrate this on a simple model, the mean-"eld XY model,
where the TH can be checked directly and analytically. Since this model is of a rather special nature, namely
a mean-"eld model with in"nitely ranged interactions, we discuss other more realistic (non-mean-"eld-like)
models, which cannot be solved analytically, but which do supply direct supporting evidence for the TH via
numerical simulations. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 02.40.!k; 05.20.!y; 05.45.#b; 05.70.Fh
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2We will mainly apply our results to systems de"ned on a lattice, so that we will not explicitly refer to the volume of
the system.

3Actually, we will also consider an enlarged con"guration space with two extra dimensions.

To the memory of Lando Caiani

1. Introduction

This paper deals with the application of concepts drawn from mathematics, in particular from
di!erential geometry and topology, to problems in statistical physics. The mathematical tools
involved come from Riemannian geometry and from Morse theory, respectively. As to the physics,
the applications of these concepts will be brought to bear on dynamical systems with many degrees
of freedom, including eventually the thermodynamic limit.

In order to contain this report to a reasonable size and yet make it accessible to as wide
a readership as possible, and since it makes use of concepts which might not be known to everyone,
we chose the following format.

The "rst part of the main text is aimed at a reader who is familiar with the basics of Riemannian
geometry, for example at the level of a course in general relativity. As to the second part, the
knowledge of Morse theory at an elementary level is assumed. However, for those who are not
familiar with these branches of mathematics, we have provided in extended appendices the main
points which are needed to follow the exposition. Similarly, we assume that the reader is familiar
with the basics of dynamical systems theory, but again we summarized in an appendix the main
concepts. In all cases references to the literature are made for the details. Both the main text and the
appendices are written as a compromise between mathematical rigour and a physicist's accessibil-
ity; in case of con#ict, we always favoured the latter.

This way we hope that a reader familiar with the basic mathematical tools will be able to read the
report straightforwardly. We have made a special e!ort to emphasize logical structure and physical
content, and we hope that the report will provide a clear survey of what has been achieved applying
geometrical methods to dynamical systems and statistical mechanics. At the same time we would
like this paper to allow the reader to familiarize herself or himself with this new "eld and to
stimulate new developments and contributions to the many points which are still open.

Throughout the paper we will consider classical Hamiltonian dynamical systems with N degrees
of freedom, con"ned in a "nite volume,2 whose Hamiltonian is of the form

H"

1
2

N
+
i/1

p2
i
#<(q

1
,2, q

N
) , (1)

where the q's and the p's are, respectively, the coordinates and the conjugate momenta of the
system. Our emphasis is on systems with a large number of degrees of freedom. The dynamics of
system (1) is de"ned in the 2N-dimensional phase space spanned by the q's and the p's. Our aim is
to relate the dynamical and the statistical properties of system (1) with the geometrical and
topological properties of the phase space where the dynamical trajectories of the system live. It
turns out that as long as we consider Hamiltonians of the form (1) we can restrict ourselves to the
study of the geometry and the topology of the N-dimensional con"guration space3 without loosing
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information. In fact as we shall see in Section 3 the dynamical trajectories can be seen as geodesics
of the con"guration space, provided the latter has been endowed with a suitable metric. As to the
topology, later on we shall see that also all the relevant information on the topology of phase space,
from the point of view of Morse theory, is encoded in the potential energy function<(q

1
,2, q

N
), so

that also the topological investigation can be restricted to the con"guration space.
This is similar to what happens in the classical statistical mechanics of Hamiltonian systems of

the form (1), where the momenta can be integrated out and the statistical measure can be de"ned on
the con"guration space alone. We remark that this is true for both the microcanonical and the
canonical ensemble.

The structure of the paper is the following: after a short historical introduction (Section 2), the
main body of the paper is organized in two parts, which, though being tightly related, are also
to a great extent independent from each other, so they could be also read separately without
encountering too many di$culties.

The "rst part (Sections 3 and 4) concerns the applications of tools belonging to classical
di!erential geometry to study the chaotic dynamics of Hamiltonian systems of the form (1), in
particular for those with a large number of degrees of freedom. Starting from the identity between
the trajectories of the dynamical system (1) and the geodesics of the con"guration space equipped
with the Jacobi or the Eisenhart metric, we develop a geometric theory of chaotic dynamics which
sheds a new light on the origin of chaos in Hamiltonian systems. In fact, it turns out that chaos
can be induced not only by negative curvatures, but also by positive curvatures, provided the
curvatures are #uctuating along the geodesics. In the case of a large number of degrees of freedom it
is possible to describe the instability of the dynamics by means of a geometric model independent of
the dynamics, which provides an analytical estimate of the largest Lyapunov exponent in terms of
the averages and #uctuations of the curvature of the con"guration space. The basic di$culty in
doing this is the extremely complicated and unknown nature of the con"guration space geometry
of many particle systems. To obtain concrete results, we had to introduce a number of simplifying
assumptions on physical grounds, which seem, however, to capture some of the essentials of the
con"guration space geometry, judging from the good agreement obtained with computer simula-
tions for the largest Lyapunov exponent. Conversely, this gives us, in principle, some insight in the
geometry of con"guration space relevant for the computation of observable properties of many
particle systems. We clari"ed the exposition with the application of the general concepts to two
special examples; however, since some of the calculations are rather lengthy, we did not provide all
the details, referring the reader for those to the appropriate literature.

While in the "rst part we deal with the application of di!erential geometry to dynamical systems
with a large number of degrees of freedom, we do not touch upon one of the most spectacular
properties of large systems, namely that in the thermodynamic limit NPR they may show sharp
phase transitions. In the second part (Sections 5 and 6) we address this point, and it is here that
topology comes into play. In fact, when a system undergoes a phase transition, the #uctuations of
the con"guration-space curvature, when plotted as a function of either the temperature or the
energy, have a singular behaviour at the transition point which can be qualitatively reproduced
using a geometric model. In such a model the origin of the singular behaviour of the curvature
#uctuations resides in a topological change. This leads us to put forward a topological hypothesis
(TH). The content of the TH is that phase transitions (at least, continuous phase transitions) would
at a deeper level be related to a particular change in the topology of the con"guration space of the
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4Kol'mogorov}Arnol'd}Moser (KAM) theory [4] might seem capable of explaining how, in spite of this `no-goa
theorem due to PoincareH and Fermi, ergodicity could fail. However, the exceedingly tiny } and fastly vanishing with the
number N of degrees of freedom } non-integrable perturbations that are required to keep a positive measure of regular
regions in phase space, do, in general, not have any physically appreciable e!ect even when only a few bodies are considered.

system. We will illustrate this on a simple model, the mean-"eld XY model, where the TH can be
checked directly and analytically. Since this model is of a rather special nature, namely a mean-"eld
model with in"nitely ranged interactions, we discuss other more realistic (non-mean-"eld-like)
models, which cannot be solved analytically, but which do supply indirect supporting evidence for
the TH via numerical simulations.

We emphasize that the purpose of the work discussed in the second part of this report is not to
extend the existing theory of phase transitions for systems described by a classical Hamiltonian. Rather,
we try to extend the foundation for the occurrence of phase transitions to transitions in the topology of
the con"guration space of the system undergoing a phase transition. This way we hope to make a new
connection between a branch of pure mathematics (topology) and a branch of statistical mechanics
(phase transitions). Such a connection appears to lead to a new approach to phase transitions.

A brief historical summary, to place the content of the present review in its historical context, is
given in the next section.

2. Historical remarks

Without attempting to be exhaustive, a few historical comments might be helpful to place the
recent contributions about the geometrical approach to dynamics and statistical physics which are
reviewed in the present article, in a more general context. This makes the present section an
exception to the self-containedness of this review paper, because we mention here concepts which
are not necessary to understand the topics treated in the rest of the paper.

The idea of looking at the collection of solutions of Newton's equations of motion from
a geometric point of view dates back to PoincareH and to the development of the qualitative theory
of di!erential equations. Tackling the famous problem of the integrability of the three-body
problem, PoincareH also discovered that generic classical Hamiltonian systems, in spite of their
deterministic nature, lack predictability, i.e. were unstable, because of their extreme sensitivity to
the initial conditions. Such an instability of classical dynamics originates in homoclinic intersec-
tions, which PoincareH described in his Me& thodes nouvelles de la me& canique ce& leste [1] without
`even attempting to drawa them (see Appendix C). However his geometric treatment of dynamics,
later developed by Cartan among others, involves submanifolds of phase space using what is now
called symplectic geometry [2]. Although of undeniable elegance, symplectic geometry is not very
helpful to advance our knowledge about those regions in phase space where the dynamics is
unstable, knowledge which is relevant for statistical mechanics.

The name of PoincareH , together with that of Fermi, is also associated with an important theorem
about the non-existence of analytic integrals of motion, besides energy, for generic non-linear
Hamiltonian systems describing at least three interacting bodies [1,3]; this is the origin of the
accessibility of the whole constant energy hypersurface of phase space which is determined by the
initial conditions. The PoincareH }Fermi theorem has been generally considered by the physics
community as su$cient to legitimate classical statistical mechanics from a dynamical viewpoint.4
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One had to wait until the 1940s when a qualitatively new attempt emerged to make use of
geometric concepts in the investigation of newtonian dynamics and its connection with statistical
mechanics. Though very di!erent from the clear mathematical expositions of PoincareH , and much
more in the spirit of a physicist, it was Krylov [5] in his doctoral dissertation, who showed for the
"rst time the existence of a close relationship between dynamical instability (seen as the exponential
ampli"cation of small deviations in the initial conditions of a collection of colliding objects
representing idealized atoms in a gas) and phase space mixing. Phase mixing is a stronger property
than ergodicity and is far more relevant to physics than ergodicity. In fact, while ergodicity assures
the equality of time and phase space averages of physical quantities, phase mixing addresses the
rate of approach in time to ensemble averages. Phase mixing entails thus the convergence of time
averages to ensemble averages in a "nite time. In modern terms, Krylov realized the necessity of
chaotic dynamics to obtain phase mixing and to make the connections between dynamics and
statistical mechanics stronger. Moreover Krylov, in view of what we are going to discuss in the next
sections, also has the great historical merit of having attempted for the "rst time to bridge the
dynamical foundations of statistical mechanics with a widely developed and powerful "eld of
mathematics: Riemannian di!erential geometry. Krylov knew certain mathematical results con-
cerning the properties of geodesic #ows on compact negatively curved manifolds by Hadamard
et al. [6], and he realized their potential interest to physics, once Newtonian dynamics is rephrased
in terms of Riemannian geometric language. Such a possibility was well known since the beginning
of the century, mainly due to the work of Levi}Civita, in particular that the principle of stationary
action entails the identity of a classical mechanical #ow with a geodesic #ow in a con"guration
space, endowed with a suitable metric. Krylov's e!orts concentrated on the analysis of the
properties of physical systems which move in negatively curved regions in con"guration space.
For example, he discussed how the presence of an in#ection point in the Lennard}Jones
potential could in#uence the dynamics of a dilute gas (through the appearance of regions of
negative scalar curvature in con"guration space) and lead to a strong instability of the dynamics.
These attempts have been very in#uential on the development of the so-called abstract ergodic
theory [7], where Anosov #ows [8] (e.g., geodesic #ows on compact manifolds with negative
curvature) play a prominent role. Ergodicity and mixing of these #ows have been thoroughly
investigated. To give an example, Sinai proved ergodicity and mixing for two hard spheres by just
showing that such a system is equivalent to a geodesic #ow on a negatively curved compact
manifold [9].

From time to time, Krylov's intuitions have been worked out further by several physicists, for
whom we refer to Refs. [10}20]. They invariably discovered, much to their surprise, that geodesic
#ows associated with physical Hamiltonians do not live on negatively curved manifolds, despite
their chaoticity even if the latter is well developed; only very few exceptions to this are known, in
fact, the two low-dimensional models discussed in Refs. [12,15], where chaos is actually associated
with negative curvature. Worse, for certain models the regions of negative curvature of the
mechanical manifolds apparently shrink by increasing the number N of degrees of freedom.

This somewhat biased search for negative curvatures has been the main obstacle to an e!ective
use of the geometric framework originated by Krylov to explain the source of chaos in Hamiltonian
systems. On the other hand, it is true that the Jacobi equation, which describes the (in)stability of
a geodesic #ow, is in practice only tractable on negatively curved manifolds, formidable mathe-
matical di$culties are encountered in treating the (in)stability of geodesic #ows on manifolds of
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non-constant and not everywhere negative curvature. Moreover, for this kind of problems,
intuition can hardly help. However, the advent of computers has been here of invaluable
help. In this connection, it may not be out of place to quote here some of the sentences which
S. Ulam remembered from the far-looking conversations he had with Fermi and von Neumann
[21]:

After the war, during one of his frequent summer visits to Los Alamos, Fermi became
interested in the development and potentialities of the electronic computing machines. He
held many discussions with me on the kind of future problems which could be studied through
the use of such machines. We decided to try a selection of problems for heuristic work where in
the absence of closed analytic solutions experimental work on a computing machine would
perhaps contribute to the understanding of properties of solutions.
(...) Fermi expressed often the belief that future fundamental theories in physics may involve
nonlinear operators and equations, and that it would be useful to attempt practice in the
mathematics needed for the understanding of nonlinear systems (...).

As a matter of fact, only during the last few years an interplay between analytic methods and
numerical simulations has made it possible to overcome the mentioned di$culties, proving the
e!ectiveness of the Riemannian geometric approach to dynamical systems of interest to statistical
mechanics, "eld theory, and condensed matter physics [22}39]. As we shall see in the following, this
has extended the domain of application of geometric techniques, and has also introduced a new
point of view about the origin of chaos in Hamiltonian systems, as well as new methods to describe
and understand it.

The use of Finsler manifolds (generalizations of Riemannian manifolds that allow the geometriz-
ation of velocity-dependent potentials as well) has also been proposed in Refs. [40,41]. An analysis
of dynamics based on the geometry of trajectories, rather than of the manifolds on which they
move, has been proposed in Ref. [42].

For what concerns the use of geometric and topologic concepts in statistical mechanics, we
must distinguish between macroscopic and microscopic phase spaces. A macroscopic phase
space is a low-dimensional space spanned by macroscopic variables, like temperature, pressure,
volume, chemical potential, etc., in other words, it is in general a parameter space. In the
1970s some applications to the study of phase transitions of the theory of singularities
of di!erentiable maps (popularly known as Catastrophe theory), which includes Morse theory,
were proposed. These followed Thom's remark that the simplest example of the classical critical
point as it appears in the van der Waals equation corresponds to the Riemann}Hugoniot
catastrophe [43,44].

An elegant and deep formulation of phase transitions related to structural instability and using
one of the most beautiful theorems in di!erential topology, the Atiyah}Singer index theorem, was
proposed by Rasetti in Ref. [45].

Other very recent proposals of geometric and topologic methods in macroscopic phase spaces
have been put forward in Refs. [46,47].

In recent papers some elements of the geometry of constant energy hypersurfaces R
E

of phase
space have been used for the microcanonical de"nitions of the temperature and the speci"c heat
[48,49], in Ref. [50] a topological property of the R

E
has been related to the mean curvature of the

R
E

from which a relationship between thermodynamics and topology emerged.
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The description of phase transitions through geometric and topologic changes in the microscop-
ic phase space has never been considered until very recently. It appeared as a natural consequence
of the above-mentioned new developments in the Riemannian theory of Hamiltonian chaos. These
newly proposed ideas, as well as the conceptual path that led from the geometry of dynamics to
topology and phase transitions, are reviewed in this paper.

3. Riemannian geometry and Hamiltonian dynamics

A Hamiltonian system whose kinetic energy is a quadratic form in the velocities is referred to
as a natural Hamiltonian system. Every Newtonian system, that is a system of particles inter-
acting through forces derived from a potential, i.e. of the form (1), belongs to this class. The
trajectories of a natural system can be seen as geodesics of a suitable Riemannian manifold. This
classical result is based on a variational formulation of dynamics. In fact, Hamilton's principle
states that the natural motions of a Hamiltonian system are the extrema of the functional
(Hamiltonian action S)

S"PLdt , (2)

where L is the Lagrangian function of the system, and the geodesics of a Riemannian manifold are
the extrema of the length functional

l"Pds , (3)

where s is the arc-length parameter. Once a connection between length and action is established, by
means of a suitable choice of the metric, it will be possible to identify the geodesics with the physical
trajectories.

3.1. Geometric formulation of the dynamics

The Riemannian formulation of classical dynamics is far from unique, even if we restrict
ourselves to the case of natural systems. There are many possible choices for the ambient space and
its metric. The most commonly known choice } dating back to the 19th century } is the so-called
Jacobi metric on the con"guration space of the system. Actually, this was the geometric framework
of Krylov's work. Among other possibilities, we will also consider a metric originally introduced
by Eisenhart on an enlarged con"guration space}time. The choice of the metric to be used will be
dictated mainly by convenience.

These choices certainly do not contain all the possibilities of geometrizing conservative dynam-
ics. For instance, with regards to systems whose kinetic energy is not quadratic in the velocities
} the classical example is a particle subject to conservative as well as velocity-dependent forces,
such as the Lorentz force } it is impossible to give a Riemannian geometrization, but becomes
possible in the more general framework of a Finsler geometry [51]. However, we will not consider
this here, and restrict ourselves to natural Hamiltonian systems.
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5Such a parameter is the time t here, but could also be the arc-length s in the following.
6The accessible con"guration space M

E
can then be seen as the union of all the `sub-con"guration spacesa

Mq3M: <(q)"E!¹N that one gets for all the possible values of ¹, 04¹4E.

For a summary of the notation and the concepts of di!erential geometry that will be used in the
following we refer the reader to Appendix A. The summation convention over repeated indices will
be always used throughout the paper, if not explicity stated otherwise.

3.1.1. The Jacobi metric
Let us consider an autonomous dynamical system, i.e., a system with interactions which do not

explicitly depend on time, whose Lagrangian can be written as

L"¹!<"1
2
a
ij
q5 iq5 j!<(q) , (4)

where the dot stands for a derivative with respect to the parameter on which the q's depend,5 and
q is a shorthand notation for all the coordinates q

1
,2, q

N
. Both these conventions will be used

throughout the paper, when there is no possibility of confusion.
The Hamiltonian H"¹#< is an integral of motion, whose value, the energy E, is a conserved

quantity. Hence, Hamilton's priciple can be cast in Maupertuis' form [2]: the natural motions of
the system are the stationary paths in the con"guration space M for the functional

A"Pc(t)pi
dqi"Pc(t)

RL
Rq5 i q5 i dt (5)

among all the isoenergetic curves, i.e. the curves c(t) connecting the initial and "nal points
parametrized so that the Hamiltonian H(p, q) is a constant equal to the energy E. The fact that the
curves must be isoenergetic with energy E implies that the accessible part of the con"guration space
is not the whole M, but only the subspace M

E
LM de"ned by

M
E
"Mq3M: <(q)4EN . (6)

In fact, a curve c@ which lies outside M
E

will never be parametrizable in such a way that the energy
is E, because c@ will then pass through points where <'E and the kinetic energy is positive.6

The kinetic energy ¹ is a homogeneous function of degree two in the velocities, hence Euler's
theorem implies that

2¹"q5 i
RL
Rq5 i (7)

and Maupertuis' principle reads as

dA"dP 2¹dt"0 . (8)

The con"guration space M of a dynamical system with N degrees of freedom has a di!erentiable
manifold structure, and the Lagrangian coordinates (q

1
,2, q

N
) can be regarded as local coordi-

nates on M. The latter becomes a Riemannian manifold once a proper metric is de"ned. For the
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7This singularity might a!ect in a non-trivial fashion the stability of the trajectories (see e.g. Ref. [52]). However,
re#ections of the trajectory at the boundary become very unlikely in the case of systems with a very large number of
degrees of freedom.

sake of simplicity, let us consider systems of the form (1), so that the kinetic energy matrix is
diagonal and the masses are all equal to one, i.e., a

ij
"d

ij
. If we write

g
ij
"2[E!<(q)] d

ij
, (9)

then Eq. (8) becomes

0"d P 2¹ dt"d P (g
ij
q5 iq5 j)1@2dt"dP ds , (10)

so that the natural motions are the geodesics of M provided ds is the arc-length element, i.e., the
metric on M is given by the tensor whose components are just the g

ij
de"ned in Eq. (9). This metric

is referred to as the Jacobi metric, and its arc-length element is

ds2,g
ij

dqidqj"2[E!<(q)]
dqi

dt
dq

i
dt

dt2"4[E!<(q)]2dt2 . (11)

The Jacobi metric vanishes (i.e., is singular7) on the boundary RM
E

of the manifold M
E

(RM
E

is
often referred to as the classical turning manifold, and is the locus where the trajectories are
re#ected).

The geodesic equations written in the local coordinate frame (q1,2, qN) are (see Eq. (A.34))

Dc5
ds

,

d2qi

ds2
#Ci

jk

dqj

ds
dqk

ds
"0 , (12)

where D/ds is the covariant derivative along the curve c(s) (see Eqs. (A.27) and (A.32)), c5 "dq/ds is
the velocity vector of the geodesic and the C are the Christo!el symbols. Using the de"nition of the
Christo!el symbols (see Eqs. (A.31)) and (9) it is straightforward to show that the Eqs. (12) become

d2qi

ds2
#

1
2(E!<)C2

R(E!<)
Rq

j

dqj

ds
dqi

ds
!gij

R(E!<)
Rq

j

g
km

dqk

ds
dqm

ds D"0 , (13)

whence, using Eq. (11), Newton's equations are recovered,

d2qi

dt2
"!

R<
Rq

i

. (14)

Note that the Jacobi metric is obtained by a conformal change of the kinetic energy metric
a
ij
} see Eq. (9) and Appendix A.3. In fact, the general result for the Riemannian geometrization of

natural Hamiltonian dynamics is the following:

Theorem. Given a dynamical system on a Riemannian manifold (M, a), i.e., a dynamical system whose
Lagrangian is

L"1
2
a
ij
q5 iq5 j!<(q) ,
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then it is always possible to xnd a conformal transformation of the metric,

g
ij
"er(q)a

ij

such that the geodesics of (M, g) are the trajectories of the original dynamical system; this transforma-
tion is dexned by

u(q)"log[E!<(q)] .

The proof proceeds as above, using Eqs. (9)}(14) and simply replacing all the d
ij

matrices with the
kinetic energy matrix a

ij
; for details, see e.g. Ref. [11].

3.1.2. The Eisenhart metric
We could try to consider the con"guration spacetime M]R as an alternative ambient space for

the geometrization of dynamics, with local coordinates (q0"t, q1,2, qN), and to de"ne a metric
starting from Hamilton's principle d:Ldt"0. We could try to de"ne a metric tensor by multiply-
ing the Lagrangian (4) by 2(dq0)2

ds2"2L (dq0)2"(gL)kl dqkdql"a
ij

dqi dqj!2<(q) (dq0)2 , (15)

where k and l run from 0 to N and i and j run from 1 to N; however, one can easily verify that the
geodesics of the manifold (M]R,gL ) are then not the natural motions of the systems, since the
Lagrangian is not an integral of the motion.

However, we can consider an ambient space with an extra dimension, M]R2, with local
coordinates (q0, q1,2, qi,2, qN, qN`1). This space can be endowed with a non-degenerate pseudo-
Riemannian metric (see Appendix A.1.2), "rst introduced by Eisenhart [53], whose arc-length is

ds2"(g
E
)kl dqkdql"a

ij
dqidqj!2<(q)(dq0)2#2dq0dqN`1 , (16)

where k and l run from 0 to N#1 and i and j run from 1 to N, and which, from now on, will be
referred to as the Eisenhart metric, and whose metric tensor will be denoted as g

E
. The relation

between the geodesics of this manifold and the natural motions of the dynamical system is
contained in the following [54]:

Theorem (Eisenhart). The natural motions of a Hamiltonian dynamical system are obtained as
the canonical projection of the geodesics of (M]R2,g

E
) on the conxguration space-time,

n:M]R2CM]R. Among the totality of geodesics, only those whose arc-lengths are positive dexnite
and are given by

ds2"c2
1

dt2 (17)

correspond to natural motions; condition (17) can be equivalently cast in the following integral form as
a condition on the extra-coordinate qN`1:

qN`1"
c2
1
2

t#c2
2
!P

t

0

Ldq , (18)

where c
1

and c
2

are given real constants. Conversely, given a point P3M]R belonging to a trajectory
of the system, and given two constants c

1
and c

2
, the point P@"n~1(P)3M]R2, with qN`1 given by

(18), describes a geodesic curve in (M]R2, g
E
) such that ds2"c2

1
dt2.
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For the full proof, see Ref. [54]. Since the constant c
1

is arbitrary, we will always set c2
1
"1 in

order that ds2"dt2 on the physical geodesics.
From Eq. (16) follows that the explicit table of the components of the Eisenhart metric is

g
E
"A

!2<(q) 0 2 0 1

0 a
11

2 a
1N

0

F F } F F

0 a
N1

2 a
NN

0

1 0 2 0 0
B , (19)

where a
ij

is the kinetic energy metric. The non-vanishing Christo!el symbols, in the case a
ij
"d

ij
,

are only

Ci
00

"!CN`1
0i

"R
i
< , (20)

so that the geodesic equations (12) read

d2q0

ds2
"0 , (21a)

d2qi

ds2
#Ci

00

dq0

ds
dq0

ds
"0 , (21b)

d2qN`1

ds2
#CN`1

0i

dq0

ds
dqi

ds
"0 ; (21c)

using ds"dt one obtains

d2q0

dt2
"0 , (22a)

d2qi

dt2
"!

R<
Rq

i

, (22b)

d2qN`1

dt2
"!

dL
dt

. (22c)

Eq. (22a) only states that q0"t, The N equations (22b) are Newton's equations, and Eq. (22c) is
the di!erential version of Eq. (18).

The fact that in the framework of the Eisenhart metric the dynamics can be geometrized with an
a$ne parametrization of the arc-length, i.e., ds"dt, will be extremely useful in the following,
together with the remarkably simple curvature properties of the Eisenhart metric (see Section 3.3).

3.2. Curvature and stability

The geometrization of the dynamics is a natural framework for the study of the stability of the
trajectories of a dynamical system, for it links the latter with the stability of the geodesics; the latter
is completely determined by the curvature of the manifold, as shown below.
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Studying the stability of the dynamics means determining the evolution of perturbations of
a given trajectory. This implies that one should follow the evolution of the linearized (tangent) #ow
along the reference trajectory. For a Newtonian system, writing the perturbed trajectory as

q8 i(t)"qi(t)#mi(t) , (23)

substituting this expression in the equations of motion

qK i"!

R<(q)
Rqi

(24)

and retaining terms up to "rst order in the m's, one "nds that the perturbation obeys the so-called
tangent dynamics equation which reads as

m$ i"!A
R2<(q)
RqiRqj B

q
i/q

i(t)

mj . (25)

This equation should be solved together with the dynamics in order to determine the stability or
instability of the trajectory: when the norm of the perturbations grows exponentially, the trajectory
is unstable, otherwise it is stable.

Let us now translate the stability problem into geometric language. By writing, in close analogy
to what has been done above in the case of dynamical systems, a perturbed geodesic as

q8 i(s)"qi(s)#Ji(s) (26)

and then inserting this expression in the equation for geodesics (12), one "nds that the evolution of
the perturbation vector J is given by the following equation:

D2Ji

ds2
#Ri

jkl

dqj

ds
Jk

dql

ds
"0 , (27)

where Ri
jkl

are the components of the Riemann curvature tensor (see Eq. (A.39)). Eq. (27) is referred
to as the Jacobi equation, and the tangent vector "eld J as the Jacobi "eld. This equation was "rst
studied by Levi}Civita and is also often referred to as the equation of Jacobi and Levi}Civita. For
a derivation we refer to Appendix A.4, where it is also shown that one can always assume that J is
orthogonal to the velocity vector along the geodesic, c5 , i.e.,

SJ, c5 T"0 , (28)

where Sv, vT stands for the scalar product induced by the metric (see Eq. (A.20)). The remarkable
fact is that the evolution of J } and then the stability or instability of the geodesic } is completely
determined by the curvature of the manifold. Therefore, if the metric is induced by a physical
system, as in the case of Jacobi or Eisenhart metrics, such an equation links the stability or
instability of the trajectories to the curvature of the ambient manifold.

The subject of the next sections is precisely to exploit such a link in order to describe and
understand the behaviour of those physical systems whose trajectories are mainly unstable.

However, before that, we have to give explicit expressions for the curvature of the mechanical
manifolds, i.e., of those manifolds whose Riemannian structure is induced by the dynamics via the
Jacobi or the Eisenhart metric.
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3.3. Curvature of the mechanical manifolds

We already observed that the Jacobi metric is a conformal deformation of the kinetic-energy
metric, whose components are given by the kinetic energy matrix a

ij
. In the case of systems

whose kinetic energy matrix is diagonal, this means that the Jacobi metric is conformally #at
(see Appendix A.3). This greatly simpli"es the computation of curvatures. It is convenient to de"ne
then a symmetric tensor C whose components are [11]

C
ij
"

N!2
4(E!<)2C2(E!<)R

i
R
j
<#3R

i
<R

j
<!

d
ij
2

D+<D2D , (29)

where < is the potential, E is the energy, and + and D ) D stand for the Euclidean gradient and norm,
respectively. The curvature of (M

E
, g

J
) can be expressed through C. In fact, the components of the

Riemann tensor are

R
ijkm

"

1
N!2

[C
jk

d
im
!C

jm
d
ik
#C

im
d
jk
!C

ik
d
jm

] . (30)

By contraction of the "rst and third indices, we obtain the Ricci tensor, whose components are
(see Eq. (A.46))

R
ij
"

N!2
4(E!<)2

[2(E!<)R
i
R
j
<#3R

i
<R

j
<]#

d
ij

4(E!<)2
[2(E!<)*<!(N!4)D+<D2]

(31)

and by a further contraction we obtain the scalar curvature (see Eq. (A.48))

R"

N!1
4(E!<)2

[2(E!<)*<!(N!6)D+<D2] . (32)

The curvature properties of the Eisenhart metric are much simpler than those of the Jacobi
metric, and this is obviously a great advantage from a computational point of view. The only
non-vanishing components of the curvature tensor are

R
0i0j

"R
i
R
j
< , (33)

hence the Ricci tensor has only one nonzero component

R
00

"*< (34)

and the scalar curvature is identically vanishing,

R"0 . (35)

To summarize, we have shown that the dynamical trajectories of a Hamiltonian system of the
form (1) can be seen as geodesics of the con"guration space, or of an enlargement of it, once

L. Casetti et al. / Physics Reports 337 (2000) 237}341 251



8As already stated at the beginning of this section, there are many other possible choices for the ambient manifold and
its metric: some other possible choices are described in Ref. [33].

a suitable metric is de"ned.8 The general relationship which holds between dynamical and
geometrical quantities regardless of the precise choice of the metric can be sketched as follows:

dynamics geometry

(time) t & s (arc-length)
(potential energy) < &g (metric)
(forces) R< &C (Christoffel symbols)
(curvature of the potential) R2<, (R<)2 &R (curvature of the manifold)

(36)

In the case of the Eisenhart metric, all these relations are extremely simple (maybe as simple as
possible). In fact, the physical time t can be chosen as equal to the arc-length s, the metric tensor
g
E

contains only the potential energy <, the non-vanishing Christo!el symbols C are equal to the
forces R<, and the components of the Riemann curvature tensor R contain only the second
derivatives of the potential energy, R

i
R
j
<.

We have also shown that the stability of the dynamical trajectories can be mapped onto the
stability of the geodesics, which is completely determined by the curvature of the manifold. We will
show in Section 4.1.3 that, in the case of the Eisenhart metric, as a consequence of its remarkably
simple properties, also the relationship between the stability of the trajectories and the stability of
the geodesics becomes as simple as possible, i.e., the Jacobi equation (27) becomes identical to the
tangent dynamics equation (25).

4. Geometry and chaos

The purpose of the present section is to describe in some detail how it is possible, using the Jacobi
equation as the main tool, to reach a twofold objective: "rst, to obtain a deeper understanding of
the origin of chaos in Hamiltonian systems, and second, to obtain quantitative informations on the
`strengtha of chaos in these systems. Some basic concepts about Hamiltonian chaos and the
de"nition of Lyapunov exponents are summarized in Appendix C.

4.1. Geometric approach to chaotic dynamics

A physical theory should provide a conceptual framework for modeling and understanding } at
least at a qualitative level } the observed features of the system which is the object of the theory, and
should also have a predictive content, i.e. should provide quantitative tools apt to compute, at least
approximately, the outcomes of the experiments (no matter if it concerns laboratory experiments or
numerical experiments performed on a computer). According to these requirements, a satisfactory
theory of deterministic chaos is certainly still lacking. In fact, in both aspects the current theoretical
approaches to chaos have some problems, especially if we consider the case of conservative #ows,
i.e., of the dynamics of conservative systems of ordinary di!erential equations.
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To explain the origin of chaos in conservative dynamics one usually invokes the existence of
invariant hyperbolic sets } or horseshoes } in phase space, like those generated by homoclinic
intersections of perturbed separatrices (see Appendix C). In order to quantify the degree of
instability of a trajectory or of a system we must instead resort to the notion of Lyapunov
exponents. The Lyapunov exponents are asymptotic quantities and their relation with local
properties of phase space, like horseshoes, is far from evident; nonetheless they provide the natural
measure of the degree of chaos, measuring the typical time scales over which a trajectory looses the
memory of its initial conditions. A rigorous de"nition of the existence of chaotic regions in the
phase space of a system, based on the detection of horseshoes, does not provide any quantitative
tool to measure chaos; on the other hand, Lyapunov exponents allow a very precise measure of
chaos but give no information at all on the origin of such a chaotic behaviour. From a conceptual
point of view this situation is far from being satisfactory, not to speak of the fact that the practical
application of the methods to search horseshoes becomes extremely di$cult as the number of
degrees of freedom is large [55]. From the predictive point of view the situation is even worse, for
no analytic method at all exists to compute Lyapunov exponents, at least in the case of #ows of
physical relevance. It is worth noticing that in a recent paper [56], Gozzi and Reuter have shown
that one could build, in principle, a "eld-theoretic framework to compute Lyapunov exponents, but
the practical application of such methods is still unclear. Needless to say, all the tools belonging to
canonical perturbation theory, which have undergone remarkable developments in the last years
[57], can hardly be used to compute quantities like Lyapunov exponents since in this framework
one can only describe the regular, i.e., non-chaotic, features of phase space.

The geometric approach to dynamical instability allows a uni"cation of the method to measure
chaos with the explanation of its origin. In fact, the evolution of the "eld J given by the Jacobi
equation (27) contains all the information needed to compute Lyapunov exponents, and makes us
also recognize in the curvature properties of the ambient manifold the origin of chaotic dynamics.

Obviously, also this approach is far from being free of problems. For instance, the only case in
which it is possible to rigorously prove that some de"nite curvature properties imply chaos in the
geodesic #ow, is the case of compact manifolds whose curvature is everywhere negative. In this case
every point of the manifold is hyperbolic: in a sense this is the opposite limit to the integrable case.
Though abstract and unphysical, such systems can help intuition. In a geodesic #ow on a compact
negatively curved manifold, the negative curvature forces nearby geodesics to separate exponenti-
ally, while the compactness ensures that such a separation does not reduce to a trivial `explosiona
of the system and obliges the geodesics to fold. The joint action of stretching and folding is the
essential ingredient of chaos.

Krylov tried to apply this framework to explain the origin of mixing in physical dynamical
systems. Unfortunately, for many systems in which chaos is detected the curvatures are found
mainly positive, and there are examples, for instance the HeH non}Heiles system } see Eq. (42)
} geometrized with the Jacobi metric and the Fermi}Pasta}Ulam model } see Eq. (83a) } geomet-
rized with the Eisenhart metric, where curvatures are always positive even in the presence of fully
developed chaos. Hence even positive curvature must be able to produce chaos.

Only recently an example has been found of a compact surface with positive curvature, where the
presence of chaotic regions coexisting with regular ones can be rigorously proved [58], and this
provides mathematical support for the available numerical evidence that negative curvature is not
necessary at all to have chaos in a geodesic #ow [22,24,31]. What then is the crucial feature of the
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curvature which is required to produce chaos? There is not yet a de"nite answer } at least on
rigorous grounds } to this question. Nevertheless it is sure that, if positive, curvature must be
non-constant in order to originate instability, and we shall see that the curvature yuctuations along
the geodesics can be responsible for the appearance of an instability through a mechanism very
close to parametric instability.

The advantages of the geometric approach to chaos are not only conceptual: also on predictive
grounds this framework proves very useful. For, starting from the Jacobi equation, it is possible to
obtain an e!ective stability equation which allows one to obtain an analytic estimate of the largest
Lyapunov exponent in the thermodynamic limit [25,31]. Such an estimate turns out to be in very
good agreement with the results of numerical simulations for a number of systems (see Section 4.2).
In order to understand the derivation of such an e!ective stability equation, let us investigate in
greater detail the relation between stability and curvature which was introduced in the last section.

4.1.1. Geometric origin of Hamiltonian chaos
Let us consider an N-dimensional Riemannian (or pseudo-Riemannian) manifold (M, g) and

a local coordinate frame with coordinates (q1,2, qN).
We already observed that the evolution of the Jacobi "eld J, which contains the whole

information on the stability of the geodesic #ow, is completely determined by the curvature tensor
R through the Jacobi equation (27). Unfortunately, the number of independent components of the
tensor R is O(N4) } even if this number can be considerably reduced by symmetry considerations
} so that Eq. (27) becomes rather untractable already at fairly small dimensions.

Nevertheless, there is a particular case in which the Jacobi equation has a remarkably simple
form: the case of isotropic manifolds (see Appendix A.3) where Eq. (27) becomes

D2Ji

ds2
#KJi"0 , (37)

where K is the constant sectional curvature of the manifold (see Eq. (A.42)). Choosing a geodesic
frame, i.e. an orthonormal frame transported along the geodesic, covariant derivatives become
ordinary derivatives, i.e., D/ds,d/ds, so that the solution of Eq. (37), with initial condition
J(0)"0 and dJ(0)/ds"w(0), is

J(s)"G
w(s)

JK
sin(JK

s
) (k'0) ,

sw(s) (K"0) ,

w(s)

J!K
sinh(J!Ks) (K(0) .

(38)

The geodesic #ow is unstable only if K(0, and in this case the instability exponent is just J!K.
As long as the curvatures are negative, the geodesic #ow is unstable even if the manifold is no

longer isotropic, and by means of the so-called `comparison theoremsa (mainly Rauch's theorem,
see e.g. [59]) it is possible to prove that the instability exponent is greater or equal to
(!max

M
(K))1@2 [7]. On the contrary, no exact results of general validity have yet been found for
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the dynamics of geodesic #ows on manifolds whose curvature is neither constant nor everywhere
negative.

Eq. (37) is valid only if K is constant. Nevertheless, in the case in which dimM"2 (surfaces), the
Jacobi equation } again written in a geodesic reference frame for the sake of simplicity } takes
a form very close to that for isotropic manifolds,

d2J
ds2

#K(s)J"0 , (39)

where

K(s)"1
2
R(s) (40)

and, contrary to Eq. (37), it is no longer a constant. With R(s) we denote the scalar curvature of the
manifold at the point P"c(s) (see Eq. (A.45)). If the geodesics are unstable, Eq. (39) has exponenti-
ally growing solutions. As far as we know [60], the solutions of (39) can exhibit an exponentially
growing envelope in two cases:
(a) the curvature K(s) takes negative values;
(b) the curvature K(s), though mainly or even exclusively positive, #uctuates in such a way that it

triggers a sort of parametric instability mechanism.
In the "rst case, the mechanism that is at the origin of the instability of the geodesics is the one
usually considered in ergodic theory [7]. But in the second case a new mechanism of instability,
which does not require the presence of negatively curved regions on the manifold, shows up: the
#uctuations of the curvature along the geodesic make the geodesic unstable.

Let us now turn to physics, i.e., to the case of a mechanical manifold: in the case of the Jacobi
metric with N"2 the scalar curvature written in standard (Lagrangian) coordinates reads as

R"

(+<)2
(E!<)3

#

*<
(E!<)2

, (41)

where + and * stand, respectively, for the Euclidean gradient and Laplacian operators. Hence we
can have R(0 only if *<(0, i.e., for stable physical potentials, when the potential has in#ection
points. In these cases Krylov's idea can work } even if in the high-dimensional case this becomes
very complicated } and we may have dynamical chaos induced by negative curvatures of the
manifold. Indeed Krylov was mainly concerned with weakly non-ideal gases, or in general dilute
systems, where for typical interatomic interactions *<(0 so that the curvatures can be negative
(see Krylov's Ph.D. Thesis in Ref. [5]).

We will now show one example in which, though chaos is present, curvatures are positive. Let us
consider the HeH non}Heiles model [61], whose Hamiltonian is

H"1
2
(p2

x
#p2

y
)#1

2
(x2#y2)#x2y!1

3
y3 . (42)

This model was introduced in an astrophysical framework to study the motion of a star in an
axially symmetric galaxy, but it can also be regarded as a model of a triatomic molecule (after
having used translational symmetry to eliminate the center-of-mass coordinate) [62]. The
HeH non}Heiles model is a cornerstone in the study of Hamiltonian chaos: it was the "rst physical
model for which chaos was found and where a transition from a mainly regular to a mainly chaotic
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phase space was identi"ed under a variation of the energy. In this model, Eq. (39) is exact, but
R'0 everywhere. Hence chaos in this system cannot come from any negative curvature in the
associated mechanical (Jacobi) manifold. As we shall see later on (see e.g. Section 4.2), the absence
of negative curvatures in the associated mechanical manifolds is not a peculiarity of this model, for
it is shared with many systems of interest for "eld theory and condensed matter physics which have
chaotic trajectories. In particular, all the systems that in the low-energy limit behave as a collection
of harmonic oscillators do belong to this class.

In these cases the second of the previously discussed instability mechanisms, the one mentioned
in item (b), comes in: curvature #uctuations may induce chaos through parametric instability. The
latter is a well-known feature of di!erential equations whose parameters are time-dependent. The
classical example (see e.g. Arnol'd's book [2]) is the mathematical swing, i.e. a pendulum, initially at
rest, whose length is modulated in time. If the modulation contains frequencies resonating with the
free pendulum's fundamental frequency, the stable equilibrium position gets unstable and the swing
starts to oscillate with growing amplitude. In Eq. (39), JK(s) and s play the role of a frequency and
of time, respectively, so that this equation can be thought of as the equation of motion of
a harmonic oscillator with time-dependent frequency, often referred to as a (generalized) Hill's
equation [63]. By expanding K(s) in a Fourier series we get

K(s)"K
0
#

=
+
n/1

[a
n
cos(nus)#b

n
sin(nus)] , (43)

where u"2p/¸ and ¸ is the length of the geodesic. The presence of resonances between the
average frequency JK

0
and the frequency in some term in expansion (43) eventually forces an

exponential growth of the solutions of the equation. In the simplest case, in which only one
coe$cient of series (43), say a

1
, is non-vanishing, the equation is called the Mathieu equation and it

is possible to compute analytically both the bounds of the instability regions in the parameter space
and the actual value of the instability exponent [63]. At variance with the Mathieu case, in the
general case, where a large number of coe$cients of the Fourier decomposition of K(s) is non-zero,
it is much more di$cult to do something similar. Hence there is not yet any rigorous proof of the
fact that this kind of parametric instability is the mechanism that produces chaos in Hamiltonian
dynamical systems } in the two-degrees-of-freedom case or in the general case } and this still
remains a conjecture. Nevertheless, such a conjecture is strongly supported by at least two facts.
First of all, in recent papers [30,27] it has been shown that the solutions of the Jacobi equation (39)
for the HeH non}Heiles model and for a model of quartic coupled oscillators show an oscillatory
behaviour with an exponentially growing envelope } which is precisely what one expects from
parametric instability } in the chaotic regions, while the oscillations are bounded in the regular
regions. Second, also in high-dimensional #ows the components of the Jacobi "eld J oscillate with
an exponentially growing amplitude as long as the system is non-integrable, whereas they exhibit
only bounded oscillations for integrable systems. Moreover, in the high-dimensional case (i.e., for
systems with a large number of degrees of freedom) it is possible to establish a quantitative link
between the largest Lyapunov exponent and the curvature #uctuations. In fact, as we shall see in
the following, in the high-dimensional case it is possibile to write down, under suitable approxima-
tions, an e!ective stability equation which looks very similar to Eq. (39), but where the squared
frequency K(s) is a stochastic process, and, through this equation, it is possible to give an analytical
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estimate of the largest Lyapunov exponent. Since, from now on, we are going to consider only the
largest Lyapunov exponent, the latter will be referred to as just the Lyapunov exponent.

4.1.2. Ewective stability equation in the high-dimensional case
Let us now study the problem of the stability of the geodesics in manifolds whose dimension N is

large: according to the correspondence between geometry and dynamics introduced in Section 3,
we are considering a system with a large number N of degrees of freedom.

Our starting point is the Jacobi equation (27). Our aim is to derive from it an e!ective stability
equation which no longer depends on the dynamics, i.e., on the evolution of the particular geodesic
that we are following, but only on the average curvature properties of the manifold. To do that, we
need some assumptions and approximations which are not valid in general but which are very
reasonable in the case of large-N mechanical manifolds. For the sake of clarity, we "rst summarize
the assumptions and approximations leading to our "nal result, and later on we discuss them more
thoroughly. Further details can be found in the papers where this approach was originally put
forward [25,31]:

0. We assume that the evolution of a generic geodesic is chaotic. This assumption is reasonable in
the case of a manifold whose geodesics are the trajectories of a generic Hamiltonian system with
a large number of degrees of freedom N, for in this case the overwhelming majority of the
trajectories will be chaotic. This bears a certain similarity to Gallavotti and Cohen's `chaotic
hypothesisa [64].

1. We assume that the manifold is quasi-isotropic. Loosely speaking, this assumption means that
the manifold can be regarded somehow as a locally deformed constant-curvature manifold.
However, we will give this assumption a precise formulation later, in Eqs. (49). This approxima-
tion allows us to get rid of the dependence of the Jacobi equation (27) on the full Riemann
curvature tensor by replacing it with an e!ective sectional curvature K(s) along the geodesic;
moreover, the Jacobi equation becomes diagonal.

2. To get rid of the dependence of the e!ective sectional curvatureK(s) on the dynamics, i.e., on the
evolution of the geodesic, we model K(s) with a stochastic process. This assumption is
motivated by Assumption 0 above. Moreover, as long as we consider a high-dimensional
mechanical manifold associated to a Hamiltonian #ow with N degrees of freedom and we are
eventually interested in taking the thermodynamic limit NPR, the sectional curvature
is formed by adding up many independent terms, so that invoking a central-limit-theorem-
like argument, K(s) is expected to behave, in "rst approximation, as a Gaussian stochastic
process.

3. We assume that the statistics of the e!ective sectional curvature K is the same as that of the
Ricci curvature K

R
, which is a suitably averaged sectional curvature (see Eq. (A.44)). Such an

assumption is consistent with Assumption 1 above, for in a constant-curvature manifold the
sectional curvature equals the Ricci curvature times a constant, and allows us to compute
the mean and the variance of the stochastic process introduced in Assumption 2 in terms of
the average and the variance of K

R
along a generic geodesic.

4. The last step, which completely decouples the problem of the stability of the geodesics from the
evolution of the geodesics themselves, consists in replacing the (proper) time averages of
the Ricci curvature with static averages computed with a suitable probability measure k. If the
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manifold is a mechanical manifold, the natural choice for k is the microcanonical measure.
Again this assumption is reasonable if Assumption 0 is valid.

After these steps, we end up with an e!ective stability equation which no longer depends on the
evolution of the geodesics, but only on the average and #uctuations of the Ricci curvature of the
manifold.

Let us now discuss more thoroughly the above-sketched procedure. For that, it is convenient to
introduce the Weyl projective tensor =, whose components are given by [65]

=i
jkl

"Ri
jkl

!

1
N!1

(R
jl
di
k
!R

jk
di
l
) , (44)

where R
ij
"Rm

imj
are the components of the Ricci curvature tensor (see Eq. (A.46)). Weyl's

projective tensor measures the deviation from isotropy of a given manifold, since it vanishes
identically for an isotropic manifold. Then we can reformulate the Jacobi equation (27) in the
following form [31]:

D2Ji

ds2
#

1
N!1

R
jk

dqj

ds
dqk

ds
Ji!

1
N!1

R
jk

dqj

ds
Jk

dqi

ds
#=i

jkl

dqj

ds
Jk

dql

ds
"0 . (45)

For an isotropic manifold the third term in Eq. (45) vanishes because R
jk
"Kg

jk
(see Eq. (A.50))

so that R
jk

q5 jJk"KSc5 , JT, and Sc5 , JT"0 (see Eq. (28)). Thus, for an isotropic manifold Eq. (45)
collapses to Eq. (37), in fact the second term is nothing but KJi. When the manifold is not isotropic,
we see that Eq. (45) retains the structure of Eq. (37) up to its second term, since the coe$cient of Ji is
still a scalar. This coe$cient has now the meaning of a sectional curvature averaged, at any given
point, over the N!1 independent directions orthogonal to c5 , the velocity vector of the geodesic.
However, such a mean sectional curvature is no longer constant along the geodesic c(s), and is just
the Ricci curvature K

R
divided by N!1 (see Eq. (A.47)). The fourth term of (45) accounts for the

local degree of anisotropy of the ambient manifold.
Let us now consider a geodesic frame: in this case Eq. (45) can be rewritten as

d2Ji

ds2
#k

R
(s)Ji!ri

j
(s)Jj#wi

j
(s)Jj"0 , (46)

where, to ease the notation, we have put

k
R
(s)"

K
R

N!1
"

1
N!1

R
jk

dqj

ds
dqk

ds
, (47a)

ri
j
(s)"

1
N!1

R
jk

dqk

ds
dqi

ds
, (47b)

wi
j
(s)"=i

kjl

dqk

ds
dql

ds
. (47c)

Being a scalar quantity, the value of k
R

is independent of the coordinate system. Now let us
formulate our Assumption 1, namely, that the manifold is quasi-isotropic, in a more precise way.
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To do that, we recall that (see Eqs. (A.49) and (A.50)) if and only if the manifold is isotropic, i.e., has
constant curvature, the Riemann curvature tensor and the Ricci tensor can be written in the
remarkably simple forms, i.e.,

R
ijkl

"K(g
ik
g
jl
!g

il
g
jk

) (48a)

and

R
ij
"Kg

ij
, (48b)

where K is a scalar constant, the sectional curvature of the manifold. The precise formulation of
Assumption 1 is now that along a generic geodesic the Riemann curvature tensor and the Ricci
tensor retain the same functional form as in case (48), i.e., that

R
ijkl

+K(s) (g
ik
g
jl
!g

il
g
jk

) (49a)

and

R
ij
+K(s) g

ij
, (49b)

whereK(s), which is no longer a constant, is an e!ective sectional curvature. In the general case we
are not able to give a rigorous explicit expression for K(s), because the functional dependence
postulated in Eqs. (49) holds true only for constant-curvature manifolds. However, the e!ective
curvatureK(s) is expected to be essentially the sectional curvature K(c5 , J) (see Eq. (A.44)) measured
along the geodesic in the directions of the velocity vector c5 "dq/ds and of the Jacobi vector J.

Combining Eqs. (47b) and (49b), and recalling that the vector J is orthogonal to the velocity of
the geodesic, i.e., g

ij
(dqi/ds)Jj"0, we "nd that the third term in Eq. (46), !ri

j
Jj, vanishes as in the

isotropic case. Now we combine Eqs. (44) and (49a) to obtain

=i
jkl

+K(s)(di
j
g
kl
!di

l
g
kj

)!
1

N!1
(R

jl
di
k
!R

jk
di
l
) , (50)

so that Eq. (47c) can be rewritten as

wi
j
+K(s)di

j
!k

R
(s)di

j
!K(s)

N!2
N!1

dqi

ds
g
kj

dqk

ds
, (51)

where we have used the de"nition of k
R

given in Eq. (47a) and approximation (49b) for the Ricci
tensor. Let us now insert Eq. (51) into Eq. (46): the last term of Eq. (51) vanishes after having been
multiplied by Jj and summed over j, because J and dq/ds are orthogonal, and the term k

R
(s)Ji is

cancelled by the term !k
R
(s)Ji coming from Eq. (51), so that Eq. (46) is "nally rewritten as

d2Ji

ds2
#K(s) Ji"0 . (52)

Eq. (52) is now diagonal. However, in order to use it, we should know the values of K(s) along
the geodesic. Here, Assumptions 2 and 3 come into play: we replace K(s) with a stochastic
Gaussian process, and we assume that its probability distribution is the same as that of the Ricci
curvature,

P(K)KP(K
R
) . (53)
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Such an assumption is consistent with our Assumption 1, because for an isotropic manifold the
sectional curvature is identical to the Ricci curvature divided by N!1, so that, if the manifold is
quasi-isotropic, it is natural to assume that the probability distributions of the sectional curvature
and of the Ricci curvature are similar. Moreover, such an assumption is also the only easy one,
because we are able to compute, under some further assumptions, the probability distribution of
K

R
, but we do not know anything about K.

To be consistent with the de"nition of the sectional and the Ricci curvatures (see Eq. (A.51)), the
following relations are assumed to hold for the "rst two cumulants of (53):

SK(s)T
s
K

1
N!1

SK
R
(s)T

s
,Sk

R
(s)T

s
, (54a)

S[K(s)!KM ]2T
s
K

1
N!1

S[K
R
(s)!SK

R
T
s
]2T

s
,Sd2k

R
T
s
, (54b)

where S ) T
s

stands for a proper-time average along a geodesic c(s). In general, the probability
distributions (53) will not be Gaussian, i.e., other cumulants in addition to the "rst two will be
non-vanishing. However, we already observed that since for a large system K

R
is obtained by

summing a large number of independent components, it is reasonable to assume that a sort of
central limit theorem holds and that a Gaussian approximation is su$cient.

Our approximation for the e!ective sectional curvature K(s) is then the stochastic process

K(s)KSk
R
(s)T

s
#Sd2k

R
T1@2
s

g(s) , (55)

where g(s) is a random Gaussian process with zero mean and unit variance.
Finally, in order to completely decouple the stability equation from the dynamics, we use

Assumption 4 and we replace time averages with static averages computed with a suitable measure
k. If the manifold is a mechanical manifold the geodesics are the natural motions of the systems,
and a natural choice for k is then the microcanonical ensemble, so that Eq. (55) becomes

K(s)KSk
R
(s)Tk#Sd2k

R
T1@2k g(s) . (56)

Our "nal e!ective stability equation is then

d2t
ds2

#Sk
R
Tk t#Sd2k

R
T1@2k g(s) t"0 , (57)

where t stands for any of the components of J, since all of them now obey the same e!ective
equation of motion.

Eq. (57) implies that, if the manifold is a mechanical manifold, the growth-rate of t gives the
dynamical instability exponent in our Riemannian framework. Eq. (57) is a scalar equation which,
independently of the knowledge of the dynamics, provides a measure of the degree of instability of the
dynamics itself through the behaviour of t(s). The peculiar properties of a given Hamiltonian
system enter Eq. (57) only through the global geometric properties Sk

R
Tk and Sd2k

R
Tk of the

ambient Riemannian manifold (whose geodesics are natural motions) and are su$cient, as long as
our Assumptions 1}4 hold, to determine the average degree of chaoticity of the dynamics.
Moreover, Sk

R
Tk and Sd2k

R
Tk are microcanonical averages, so that they are functions of the
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energy E of the system, or of the energy per degree of freedom e"E/N which is the relevant
parameter as NPR. Thus from (57) we can obtain the energy dependence of the geometric
instability exponent.

Within the validity of our Assumptions 1}4, transforming the Jacobi equation (27) into
Eq. (57), the original complexity of the Jacobi equation has been considerably reduced:
from a tensor equation we have obtained an e!ective scalar equation formally representing the
equation of motion of a stochastic oscillator. In fact, Eq. (57), with a self-evident notation, is of
the form

d2t
ds2

#k(s)t"0 , (58)

where k(s), the squared frequency, is a Gaussian stochastic process.
Moreover, such an equation admits a very suggestive geometric interpretation, since it is a scalar

equation, i.e., it is formally the Jacobi equation on a two-dimensional manifold whose Gaussian
curvature is given, along a geodesic, by the random process k(s) and can be regarded as an
`e!ectivea low-dimensional manifold approximating the `truea high-dimensional manifold where
the dynamics of the geodesic #ow takes place. This is the real geometrical content of our
quasi-isotropy hypothesis. Hence, the average global curvature properties Sk

R
Tk and Sd2k

R
Tk , in

addition to being the ingredients for a geometric computation of the instability exponent, convey
also information on the geometric structure of this e!ective manifold. Thus, we expect that it will be
possible to gain some insight in the global properties of the dynamics by simply studying the
behaviour of these average curvature properties as the energy is varied.

4.1.3. A geometric formula for the Lyapunov exponent
Let us now study the properties of the solutions of Eq. (58) in order to obtain an analytic estimate

for the Lyapunov exponent. The derivation of the stochastic oscillator equation does not depend
on a particular choice of the metric; within the approximations discussed above, Eq. (58) holds
regardless of the choice of the metric. However, to make explicit the connection between
the solutions of Eq. (58) and the stability of a dynamical system, one has to choose a particular
metric; in the case of Hamiltonian systems of the form (1), the choice of the Eisenhart metric is the
simplest one.

For this reason, we shall from now on restrict ourselves to standard Hamiltonian systems with
a diagonal kinetic energy matrix, i.e., a

ij
"d

ij
, choosing as ambient manifold for the geometriz-

ation of the dynamics the enlarged con"guration space}time equipped with the Eisenhart metric
(16). The case of the Jacobi metric is discussed in Ref. [31].

We will proceed as follows. (i) We will show that in the present case the Jacobi equation (27) is
equal to the tangent dynamics equation (25). (ii) We will replace the arc-length s with the time t and
we will explicitly compute the average and the #uctuations of the Ricci curvature along a geodesic
in terms of dynamical observables, so that the (static) probability distribution of the stochastic
process k(t) which models the e!ective sectional curvature is de"ned. (iii) We will give an estimate
for the time correlation function of the process k(t). (iv) We will solve the stochastic oscillator
equation, obtaining an analytical formula for the Lyapunov exponent.
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Let us now consider item (i). As a consequence of the simple structure of the curvature tensor for
the Eisenhart metric (see Section 3.3), the Jacobi equation (27) takes the form (we recall that the
manifold has now dimension N#2; all the indices i, j, k,2 run from 1 to N)

D2J0

ds2
#R0

i0j

dqi

ds
J0

dqj

ds
#R0

0ij

dq0

ds
Ji

dqj

ds
"0 , (59a)

D2Ji

ds2
#Ri

0j0A
dq0

ds B
2
Jj#Ri

00j

dq0

ds
J0

dqj

ds
#Ri

j00

dqj

ds
J0

dq0

ds
"0 , (59b)

D2JN`1

ds2
#RN`1

i0j

dqi

ds
J0

dqj

ds
#RN`1

ij0

dqi

ds
Jj

dq0

ds
"0 , (59c)

where, for the sake of clarity, we have written out Eq. (59) separately for the 0, the i"1,2, N, and
the N#1 components, respectively. As C0

ij
"0 (see Eq. (20)) we obtain, from the de"nition of

covariant derivative (see Eq. (A.32)), DJ0/ds"dJ0/ds, and, as R0
ijk

"0 (see Section 3.3), we "nd
that Eq. (59a) becomes

d2J0

ds2
"0 , (60)

so that J0 does not accelerate and, without loss of generality, we can set dJ0/dsD
s/0

"J0(0)"0.
Combining the latter result with the de"nition of covariant derivative we obtain

DJi

ds
"

dJi

ds
#Ci

0k

dq0

ds
Jk (61)

and using dq0/ds"0 we "nally get

D2Ji

ds2
"

d2Ji

ds2
, (62)

so that Eq. (59b) gives, for the projection in con"guration space of the separation vector,

d2Ji

ds2
#

R2<
Rq

i
Rq

k
A
dq0

ds B
2
J
k
"0 . (63)

Eq. (59c) describes the evolution of JN`1, which, however, does not contribute to the norm of
J because g

N`1N`1
"0, so we can disregard it.

Along the physical geodesics of g
E
, ds2"(dq0)2"dt2, so that Eq. (63) is exactly the usual

tangent dynamics equation (25), provided the identi"cation m"J is made. This clari"es then the
relationship between the geometric description of the instability of a geodesic #ow and the
conventional description of dynamical instability. We stress that from a formal viewpoint this is
a peculiarity of the Eisenhart metric; nevertheless, the physical content of this result is valid
independently of the metric used, as long as the identi"cation between trajectories and geodesics
holds true. For, in recent papers [30,27] it has been found that using the Jacobi metric the solutions
of the Jacobi equation and of those of the tangent dynamics equation } which in this case are two
well-distinct equations } look strikingly similar.
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We now turn to item (ii). The Ricci curvature is obtained saturating the Ricci tensor with the
components of the velocity vector dq/ds (see Eq. (A.47)). In the present case, the only non-vanishing
component of the Ricci tensor is R

00
"*< (see Eq. (34)), so that the dynamical observable which

corresponds to the Ricci curvature along a geodesic depends only on the coordinates and not on
the velocities and reads

K
R
(q)"*< , (64)

where we have used that, along a physical geodesic, (dq0)2"dt2!ds2. Using again this result we
replace the arc-length s along the geodesic with the physical time t, and the stochastic oscillator
equation (58) can be written

d2t
dt2

#k(t)t"0 , (65)

where mean and variance of k(t) are given by

k
0
,Sk

R
Tk"

1
N

S*<Tk , (66a)

p2
k
,Sd2k

R
Tk"

1
N

(S(*<)2Tk!S*<T2k ) . (66b)

Since we are considering systems with large N } eventually taking the limit NPR } we
replaced N!1 with N in Eqs. (66).

We consider now item (iii). The process k(t) is not completely de"ned unless its time correlation
function,

C
k
(t
1
, t

2
)"Sk(t

1
)k(t

2
)T!Sk(t

1
)TSk(t

2
)T , (67)

is given. The simplest choice is to assume that k(t) is a stationary and d-correlated process, so that

C
k
(t
1
, t

2
)"C

k
(Dt

2
!t

1
D)"C

k
(t)"qp2

k
d(t) , (68)

where q is the characteristic correlation time scale of the process.
Before we can actually solve Eq. (65), we have then to give an explicit expression for q. To do that,
"rst we will show how two independent characteristic correlation time scales, which will be referred
to as q

1
and q

2
, respectively, can be de"ned, then we will estimate q by combining these two time

scales.
A "rst time scale, which we will refer to as q

1
, is associated to the time needed to cover the

average distance between two successive conjugate points along a geodesic. Conjugate points [59]
are the points where the Jacobi vector "eld vanishes. As long as the curvature is positive and its
#uctuations are small compared to the average, two nearby geodesics will remain close to each
other until a conjugate point is reached. At each crossing of a conjugate point the Jacobi vector
"eld increases as if the geodesics were kicked (this is what happens when parametric instability is
active). Thus the average distance between conjugate points provides a relevant correlation time
scale. It can be proved that [59,66] if the sectional curvature K is bounded as 0(¸4K4H, then
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the distance d between two successive conjugate points is bounded by d'p/2JH. The upper
bound H of the curvature can then be approximated in our framework by

HKk
0
#p

k
, (69)

so that we can de"ne q
1

as (remember that dt"ds)

q
1
"d

1
"

p

2Jk
0
#p

k

. (70)

This time scale is expected to be the most relevant only as long as the curvature is positive and the
#uctuations are small, compared to the average.

Another time scale, referred to as q
2
, is related to the local curvature #uctuations. These will be

felt on a length scale of the order of, at least, l"1/Jp
k

(the average #uctuation of curvature
radius). The scale l is expected to be the relevant one when the #uctuations are of the same order of
magnitude as the average curvature. Locally, the metric of a manifold can be approximated by [59]

g
ik
Kd

ik
!1

6
R

ikjl
uiuk , (71)

where the ui are the components of the displacements from the point around which we are
approximating the metric. When the sectional curvature is positive (resp. negative), lengths and
time intervals } on a scale l } are enlarged (resp. shortened) by a factor (l2K/6), so that the period
2p/Jk

0
has a #uctuation amplitude d

2
given by d

2
"(l2K/6)2p/Jk

0
; replacing K by the most

probable value k
0

one gets

q
2
"d

2
"

l2k
0

6
2p

Jk
0

K

k1@2
0
p
k

. (72)

Finally q in Eq. (68) is obtained by combining q
1

with q
2

as follows:

q~1"q~1
1

#q~1
2

. (73)

The present de"nition of q is obviously by no means a direct consequence of any theoretical result,
but only a rough, physically based estimate. Such an estimate might well be improved independent-
ly of the general geometric framework.

Now that all the quantities entering Eq. (65) have been fully de"ned, we can turn to item (iv), i.e.,
to the solution of Eq. (65). Whenever k(t) has a non-vanishing stochastic component, any solution
t(t) has an exponentially growing envelope [67] whose growth-rate provides a measure of the
degree of instability. How can one relate such a growth-rate with the Lyapunov exponent of
the physical system? Let us recall that, for a standard Hamiltonian system of the form (1), the
Lyapunov exponent can be computed as the following limit (see Eq. (C.12)):

j"lim
t?=

1
2t

log
m2
1
(t)#2#m2

N
(t)#mQ 2

1
(t)#2#mQ 2

N
(t)

m2
1
(0)#2#m2

N
(0)#mQ 2

1
(0)#2#mQ 2

N
(0)

, (74)

where the m's are the components of the tangent vector, i.e., of the perturbation of a reference
trajectory, which obey the tangent dynamics equation (25). In the case of Eisenhart metric, each
component of the Jacobi vector "eld J can be identi"ed with the corresponding component of the
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tangent vector m; moreover, t in Eq. (65) stands for any of the components of J, which obey the
same e!ective equation. Thus, Eq. (74) becomes

j"lim
t?=

1
2t

log
t2(t)#tQ 2(t)
t2(0)#tQ 2(0)

, (75)

where t(t) is solution of Eq. (65). Eq. (75) is our estimate for the (largest) Lyapunov exponent.
As a stochastic di!erential equation, the solutions of Eq. (65) are properly de"ned after an

averaging over the realizations of the stochastic process: referring to such an averaging as SvT, we
rewrite Eq. (75) as

j"lim
t?=

1
2t

log
St2(t)T#StQ 2(t)T
St2(0)T#StQ 2(0)T

. (76)

The evolution of St2T, StQ 2T and SttQ T, i.e., of the vector of the second moments of t, obeys the
following equation, which can be derived by means of a technique, developed by Van Kampen and
sketched in Appendix D:

d
dtA

St2T

StQ 2T
SttQ TB"A

0 0 2

p2
k
q 0 !2k

0
!k

0
1 0 BA

St2T

StQ 2T
SttQ TB , (77)

where k
0

and p
k

are the mean and the variance of k(t), de"ned in Eqs. (66a) and (66b), respectively.
Eq. (77) can be solved by diagonalizing the matrix on the r.h.s. of (77). The result for the evolution of
St2T#StQ 2T is

St2(t)T#StQ 2(t)T"(St2(0)T#StQ 2(0)T) exp(at) , (78)

where a is the only real eigenvalue of the matrix. According to Eq. (76), the Lyapunov exponent is
given by j"a/2, so that, by computing explicitly a, one then "nds the "nal expression

j(k
0
, p

k
, q)"

1
2AK!

4k
0

3K B , (79a)

K"Ap2
k
q#SA

4k
0

3 B
3
#p4

k
q2B

1@3
. (79b)

All the quantities k
0
, p

k
and q(k

0
, p

k
) can be computed as static averages, as functions of the energy

per degree of freedom, e (see Eqs. (66a) and (66b)). Therefore } within the limits of validity of the
assumptions made above } Eq. (79) provide an approximate analytic formula to compute
the largest Lyapunov exponent independently of the numerical integration of the dynamics and of
the tangent dynamics.

Let us remark that expanding Eqs. (79) in the limit p
k
;k

0
one "nds that

jJp2
k

(80)

which shows how close the relation is between curvature #uctuations and dynamical instability.
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4.2. Some applications

Let us now discuss brie#y the results of the application of the geometric techniques described up
to this point to some Hamiltonian models. In particular, we shall consider two cases: a chain of
coupled non-linear oscillators (the so-called FPU b model, "rst introduced by Fermi et al. [68])
and a chain of coupled rotators (the 1-d X> model). The reason for the choice of these two
particular models is that they allow fully analytic calculations and are well suited to show
advantages and limitations of the theory. The geometric theory developed above has already been
applied to many other cases, some of which will be addressed in Section 5. For other applications
we refer to the literature: in particular, a model of a homopolymer chain has been studied in
Ref. [32], a model of a three-dimensional Lennard}Jones crystal has been studied in Ref. [34], and
a classical lattice gauge theory has been considered in Ref. [39]. The geometric approach has also
been applied to a continuum "eld theory in one dimension [69]. Without entering into the details,
we would like to single out a result which is shared by all the models considered until now. In all
these models the functional dependence of the largest Lyapunov exponent on the energy per degree
of freedom e, in the low-e limit, is numerically found to be

j(e)Je2 . (81)

No explanation of this `universala behaviour is yet at hand, and for some cases doubts about the
validity of such a scaling with energy have been raised, because the numerical determination of
Lyapunov exponents at low e is di$cult. However, the application of the geometric theory has
provided a theoretical con"rmation of this behaviour in all cases considered.

The systems we now consider are 1-d models with nearest-neighbour interactions whose
Hamiltonians H have the standard form (1) with

<"
N
+
i/1

v(q
i
!q

i~1
) . (82)

The interaction potentials are, respectively,

v(x)"1
2
x2#

u
4
x4 (FPU-b model) , (83a)

or

v(x)"!J cosx (1-d XY model) . (83b)

In Eq. (83a) we used u instead of the customary b in order to avoid confusion with the inverse
temperature b. We assume u'0.

The geometric quantities } in the framework of the Eisenhart metric } which are relevant in the
quasi-isotropy approximation to describe the `e!ectivea structure of the mechanical manifold, and
which enter the geometric formula for the Lyapunov exponent, are the average and the root mean
square (r.m.s.) #uctuations of the Ricci curvature of the mechanical manifold. They are de"ned as
statistical averages computed in the microcanonical ensemble (see Eqs. (66)). First, we will show
how these microcanonical quantities can be computed starting from the canonical partition
function, which can be calculated exactly for an in"nite chain, i.e., NPR, for both models (83).
Then, we will apply this procedure to each of the two models (83).
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The average and #uctuations, within the microcanonical ensemble, of any observable function
f (q), can be computed as follows, in terms of the corresponding quantities in the canonical
ensemble. The canonical con"gurational partition function Z(b) is given by

Z(b)"Pdqe~bV(q) (84)

where dq"<N
i/1

dq
i
. The canonical average S f T

#!/
of the observable f can be computed as

S fT
#!/

"[Z(b)]~1Pdq f (q) e~bV(q) . (85)

From this average, we can obtain the microcanonical average of f, S fTk , in the following (implicit)
parametric form [70]:

S fTk(b)"S f T
#!/

(b)

e(b)"
1
2b

!

1
N
R
Rb[logZ(b)]HPS f Tk(e) . (86)

Note that Eq. (86) is strictly valid only in the thermodynamic limit; at "nite N, S fTk(b)"
S fT

#!/
(b)#O(1/N).

Contrary to the computation of S f T, which is insensitive to the choice of the probability measure
in the NPR limit, computing the #uctuations of f, i.e., of Sd2fT"(1/N)S( f!S f T)2T, by means
of the canonical or microcanonical ensembles yields di!erent results. The relationship between the
canonical } i.e. computed with the Gibbsian weight e~bH } and the microcanonical #uctuations, is
given by the Lebowitz}Percus}Verlet formula [70]

Sd2fTk(e)"Sd2fT
#!/

(b)!
b2

c
V
C
RS f T

#!/
(b)

Rb D
2
, (87)

where

c
V
"!

b2

N
RSHT

#!/
Rb (88)

is the speci"c heat at constant volume and b"b(e) is given in implicit form by the second equation
in (86).

The average k
0

and the #uctuations p
k

of the Ricci curvature per degree of freedom are then
obtained by replacing f with the explicit expression for Ricci curvature, which, according to the
de"nition given in Eq. (64), is

K
R
(q)"

N
+
i/1

R2
Rq2

i

v(q
i
!q

i~1
) (89)

in Eqs. (86) and (87), respectively.
We now turn to the two applications mentioned above.
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4.2.1. FPU b model
For the FPU b model the dynamical observable which corresponds to the Ricci curvature reads,

according to Eq. (89),

K
R
"2N#6u

N
+
i/1

(q
i`1

!q
i
)2 . (90)

Note that K
R

is always positive and that this is also true for the sectional curvature along
a physical geodesic. Computing the microcanonical average of K

R
according to Eq. (86) we "nd

that in the thermodynamic limit k
0
(e) is implicitly given by (the details are reported in Ref. [31])

Sk
R
T
#!/

(h)"2#
3
h

D
~3@2

(h)
D

~1@2
(h)

e(h)"
1
8pC

3
h2

#

1
h

D
~3@2

(h)
D

~1@2
(h)D HPk

0
(e) , (91)

where the Dl are parabolic cylinder functions [63] and h is a parameter proportional to b, so that
h3[0,#R].

Let us now compute the #uctuations

p2
k
(e)"

1
N

Sd2K
R
Tk(e)"

1
N

S(K
R
!SK

R
T)2Tk . (92)

According to Eq. (87), "rst the canonical #uctuation, Sd2k
R
T
#!/

(b)"(1/N)S(K
R
!SK

R
T)2T

#!/
(b),

has to be computed and then a correction term must be added. For the canonical #uctuation we
obtain [31]

Sd2k
R
T
#!/
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9
h2G2!2h

D
~3@2

(h)
D

~1@2
(h)

!C
D
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D
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(h)D
2

H (93)

and the "nal result for the #uctuations of the Ricci curvature is
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(e) , (94)

where Sd2k
R
T
#!/

(h) is given by (93), RSk
R
T(h)/Rb is given by

RSk
R
T(h)
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3
8kh3

hD2
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(95)

and the speci"c heat per particle c
V

is found to be [71,31]

c
V
(h)"

1
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~1@2
(h)

M(12#2h2)D2
~1@2

(h)#2hD
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(h)]N . (96)
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Fig. 2. Fluctuations of the Ricci curvature (Eisenhart metric), p
k
vs. energy density e for the FPU-b model. Symbols and

parameters as in Fig. 1; the continuous line now refers to Eq. (94). From Ref. [24].

Fig. 1. Average Ricci curvature (Eisenhart metric) per degree of freedom, k
0
, vs. energy density e for the FPU-b model.

The continuous line is the analytic computation according to Eq. (91); circles and squares are time averages obtained by
numerical simulations with N"128 and 512, respectively; u"0.1. From Ref. [24].

The microcanonical averages and #uctuations computed in Eqs. (91) and (94) are compared in Figs.
1 and 2 with their corresponding time averages computed along numerically simulated trajectories
of the FPU b-model with potential (83a) for N"128 and 512 with u"0.1. Though the micro-
canonical averages have to be computed in the thermodynamic limit, the agreement between time
and ensemble averages is excellent already at N"128.
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Fig. 3. Fluctuations of the Ricci curvature (Eisenhart metric) divided by the average curvature, p
k
/k

0
, vs. energy density

e for the FPU-b model.

Before we comment on these results, we remark here that in many Hamiltonian dynamical
systems di!erent dynamical regimes can be found as the energy per degree of freedom e is varied
(see, for a review, Ref. [72] and references quoted therein). In particular, in the FPU-b model,
a weakly chaotic regime is found for speci"c energies smaller than e

#
+0.1/u [73,74,24]. Although

in the weakly chaotic regime the dynamics is chaotic (i.e., the Lyapunov exponent is positive,
though small), mixing is very slow, as witnessed by the existence of a rather long memory of the
initial conditions, i.e., of long relaxation times if the initial conditions are far from equilibrium. For
e larger than e

#
the dynamics is strongly chaotic and relaxations are fast. The precise origin of these

phenomena is still to be understood. However, the geometric approach described here is able to
provide a suggestive interpretation [24,33]. Let us consider Fig. 3, where the ratio of the
#uctuations and the average curvature p

k
/k

0
is reported. As eP0, p

k
;k

0
, so that the manifold

looks essentially like a constant curvature manifold with only small curvature #uctuations. This
situation corresponds to the weakly chaotic dynamical regime. On the contrary, as e is larger than
e
#
, p

k
/k

0
tends to saturate towards a value of order unity, thus indicating that in the high-energy

(strongly chaotic) regime the curvature #uctuations are of the same order of magnitude as the
average curvature, so that the system no longer `feelsa the isotropic (and integrable) limit. Hence,
the geometric approach can give a hint for understanding, at least qualitatively, the origin of weak
and strong chaos in the Fermi}Pasta}Ulam model.

The geometric theory also allows us to make a quantitative prediction for the Lyapunov
exponent as a function of k

0
and p

k
via Eq. (79), which turns out to be extremely accurate. The

analytic result is shown in Fig. 4 and is compared with numerical simulations made for di!erent
values of N, for the FPU-b case in a wide range of energy densities } more than six orders of
magnitude [25,31]. The agreement between theory and simulations is remarkably good, which
con"rms the validity of the simplifying assumptions which we had to introduce on physical
grounds to capture some of the essentials of the con"guration space geometry.
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Fig. 4. Lyapunov exponent j vs. energy density e for the FPU-b model with u"0.1. The continuous line is the
theoretical computation according to Eq. (79), while the circles and squares are the results of numerical simulations with
N, respectively, equal to 256 and 2000. From Ref. [31].

4.2.2. 1-d XY model
If the canonical coordinates q

i
and p

i
are given the meaning of angular coordinates and

momenta, the 1-d X> model, whose potential energy is given in Eq. (83b), describes a linear chain
of N rotators constrained to rotate on a plane and coupled by a nearest-neighbour interaction.
This model can be formally obtained by restricting the classical Heisenberg model with O(2)
symmetry to one spatial dimension. The potential energy of the O(2) Heisenberg model is
<"!J+

Wi,jX
s
i
) s

j
, where the sum is extended only over nearest-neighbour pairs, J is the coupling

constant and each s
i
has unit modulus and rotates in the plane. To each `spina s

i
"(cos q

i
, sin q

i
),

the velocity s5
i
"(!q5

i
sin q

i
, q5

i
cos q

i
) is associated, so that H"+N

i/1
1
2
s5 2
i
!J+

Wi,jX
s
i
) s

j
.

This Hamiltonian system has two integrable limits. In the small energy limit it represents a chain
of harmonic oscillators, as can be seen by expanding the potential energy in a power series,

H(p, q)K
N
+
i/1
G
p2
i
2
#J(q

i`1
!q

i
)2!1H , (97)

where p
i
"q5

i
, whereas in the high-energy limit a system of freely rotating objects is found, because

the kinetic energy becomes much larger than the bounded potential energy.
The dynamics of this system has been extensively studied recently [71,75,28]. Numerical

simulations and theoretical arguments independent of the geometric approach (see in particular
Ref. [75]) have shown that also in this system there exist weakly and strongly chaotic dynamical
regimes. It has been found that the dynamics is weakly chaotic in the low- and high-energy density
regions, close to the two integrable limits. On the contrary, fully developed chaos is found in the
intermediate-energy region.
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According to Eq. (89), the expression of the Ricci curvature K
R
, computed with the Eisenhart

metric, is

K
R
(q)"2J

N
+
i/1

cos(q
i`1

!q
i
) . (98)

We note that for this model a relation exists between the potential energy < and Ricci curvature
K

R
:

<(q)"JN!

K
R
(q)

2
. (99)

The average Ricci curvature can be again expressed by implicit formulae (see Ref. [31] for
details)

Sk
R
Tk(b)"2J
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(bJ)

I
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(bJ)

e(b)"
1
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I
1
(bJ)

I
0
(bJ)BHPk

0
(e) , (100)

where the Il 's are modi"ed Bessel functions of index l [63]. The #uctuations are given by the
implicit equations
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I
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(bJ)D HPp2

k
(e) . (101)

In Figs. 5 and 6 a comparison between analytical and numerical results is provided for the average
Ricci curvature and its #uctuations. The agreement between ensemble and time averages is again
very good.

Looking at Figs. 5 and 6 we realize that the low-energy weakly chaotic region has the same
geometric properties as the corresponding region of the FPU model, as expected, since the two
low-energy integrable limits are the same. On the contrary, in the high-energy weakly chaotic
region the #uctuations are far from being small with respect to the average curvature. The average
curvature k

0
(e) vanishes as ePR. In this case the weakly chaotic dynamics seems related to the

fact that the manifold (M]R2,g
E
) looks almost #at along the physical geodesics. The bounds of

the two weakly chaotic regions, as estimated in Ref. [75], coincide with the values of e where the
asymptotic behaviour of k (low-energy region) and p

k
(high-energy region) set in, respectively.

Moreover, the case of the coupled rotators is very di!erent from the FPU case, since the sectional
curvature K(s) along a geodesic can take negative values. The probability P(e) that K(s)(0 can be
analytically estimated in the following simple way. The explicit expression of the sectional
curvature K(c5 , m), relative to the plane spanned by the velocity vector c5 "dq/dt and a generic vector
moc5 , is (see Eq. (A.43))

K(c5 , m)"R
0i0k

dq0

dt
mi

DDmDD
dq0

dt
mk

DDmDD
,

R2<
RqiRqk

mimk

DDmDD2
, (102)
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Fig. 5. Average Ricci curvature (Eisenhart metric) per degree of freedom k
0

vs. speci"c energy e for the coupled rotators
model. The continuous line is the result of an analytic computation according to Eq. (100); the full circles are time
averages obtained by numerical simulations with N"150; J"1. From Ref. [31].

Fig. 6. Fluctuation of the Ricci curvature (Eisenhart metric) p2
k

vs. speci"c energy e for the coupled rotators model.
Symbols and parameters as in Fig. 5; the continuous line now refers to Eq. (101). From Ref. [31].

so that, computing R2</RqiRqk using the explicit form of <(q) given in Eq. (83b), we get

K(c5 , m)"
J

DDmDD2
N
+
i/1

cos(q
i`1

!q
i
)[mi`1!mi]2 (103)

L. Casetti et al. / Physics Reports 337 (2000) 237}341 273



9The sectional curvature is always strictly positive in the FPU b model; in the 1-d X>model, in the low energy region,
negative sectional curvatures can occur, but have a very small probability.

Fig. 7. Estimate of the probability P(e) of occurrence of negative sectional curvatures in the 1-d X> model according to
Eq. (104); J"1. From Ref. [31].

for the 1-d X> model. We realize, by simple inspection of Eq. (103), that the probability of "nding
K(0 along a geodesic must be related to the probability of "nding an angular di!erence larger
than p/2 between two nearest-neighbouring rotators. From Eq. (103) we see that N orthogonal
directions of the vector m exist such that the sectional curvatures } relative to the N planes spanned
by these vectors together with c5 } are just cos(q

i`1
!q

i
). These directions are de"ned by the unit

vectors of components (1, 0,2, 0), (0, 1, 0,2, 0),2, (0,2, 0, 1). Hence the probability P(e) of occur-
rence of a negative value of a cosine is used to estimate the probability of occurrence of negative
sectional curvatures along the geodesics. This probability function, calculated using the Boltzmann
weight, has the following simple expression [28,31]:

P(e)"
:p
~p

H(!cos x)ebJ #04 x dx
:p
~p

ebJ #04 x dx
"

:3p@2
p@2

ebJ #04 xdx
2pI

0
(bJ)

, (104)

where H(x) is the Heavyside unit step function and I
0

the modi"ed Bessel function of index 0. P(e) is
plotted in Fig. 7. We see that in the strongly chaotic region such a probability starts to increase
rapidly from a very small value, while it approaches an asymptotic value P(e)K1/2 when the
system enters its high-energy weakly chaotic region.

When the sectional curvatures are positive9 chaos is produced by curvature #uctuations, hence
we expect chaos to be weak as long as p

k
/k

0
;1, and to become strong when p

k
+k

0
. On the

contrary, when K(s) can assume both positive and negative values, the situation is much more
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Fig. 8. Lyapunov exponent j vs. energy density e for the 1-d X>model with J"1. The continuous line is the theoretical
computation according to Eq. (79), while full circles, squares and triangles are the results of numerical simulations with N,
respectively, equal to 150, 1000, and 1500. The dotted line is the theoretical result where the value of k entering Eq. (79)
has been corrected according to Eq. (106) with a"150. From Ref. [31].

10The fact that the two mechanisms, when comparable, can inhibit rather than strengthen each other can be
considered a `proof a of the fact that their nature is intrinsically di!erent. A similar situation is found also in some billiard
systems, where there are two mechanisms which can produce chaos: (i) defocusing, due to positively curved boundaries,
and (ii) divergence of the trajectories due to scatterings with negatively curved boundaries [76].

complicated, for there are now two di!erent and independent sources of chaos: negative curvature
which directly induces a divergence of nearby geodesics, and the bumpiness of the ambient
manifold which induces such a divergence via parametric instability. The results for the coupled
rotators model suggest that as long as the negative curvatures are `fewa they do not dramatically
change the picture, and may strengthen the parametrically generated chaos, while when their
occurrence is equally likely as the occurrence of positive curvatures, the two mechanisms of chaos
seem to inhibit each other and chaos becomes weak.10

Such a qualitative picture is consistent with the result of the geometric computation of j for the
coupled rotator model. The result of the application of Eq. (79) to this model is plotted in
Fig. 8 (solid line). There is agreement between analytic and numeric values of the Lyapunov
exponent only at low- and high-energy densities. Like in the FPU case, at low energy, in the
quasi-harmonic limit, we "nd j(e)Je2. At high energy j(e)Je~1@6; here j(e) is a decreasing
function of e because for ePR the systems is integrable.

However, in the intermediate energy range our theoretical prediction underestimates the actual
degree of chaos of the dynamics. This energy range coincides with the region of fully developed
(strong) chaos. According to the above discussion the origin of the underestimation can be found in
the fact that the role of the negative curvatures, which appears to strengthen chaos in this energy
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range, is not correctly taken into account. The sectional curvature K(s), whose expression is given
by Eq. (103), can take negative values with non-vanishing probability regardless of the value of e,
whereas, as long as e(J, this possibility is lost in the replacement of K by the Ricci curvature, due
to constraint (99), which implies that at each point of the manifold

k
R
(e)52(J!e) . (105)

Thus, our approximation fails to account for the presence of negative sectional curvatures at values
of e smaller than J. In Eq. (103) the cosines have di!erent and variable weights, (mi`1!mi)2, which
make it, in principle, possible to "nd somewhere along a geodesic a K(0 even with only one
negative cosine. This is not the case for k

R
where all the cosines have the same weight.

Let us now show how the theoretical results can be improved. Our strategy is to modify the
model for K(s) in some ewective way which takes into account the just mentioned di$culty of k

R
(s)

to adequately model K(s). This will be achieved by suitably `renormalizinga k
0

or p
k

to obtain an
`improveda Gaussian process which can better model the behaviour of the sectional curvature.
Since our `barea Gaussian model underestimates negative sectional curvatures in the strongly
chaotic region, the simplest way to renormalize the Gaussian process is to shift the peak of the
distribution P(K

R
) toward the negative axis to make the average smaller. This can easily be done

by the following rescaling of the average curvature k
0
:

k
0
"Sk

R
(e)TP

Sk
R
(e)T

1#aP(e)
. (106)

This correction has no in#uence either when P(e)K0 (below eK0.2) or when P(e)K1/2 (because in
that case Sk

R
(e)TP0). The simple correction (106) makes use of the information we have obtained

analytically, i.e., of the P(e) given in Eq. (104), and is su$cient to obtain an excellent agreement of
the theoretical prediction with the numerical data over the whole range of energies, as shown in
Fig. 8. The parameter a in (106) is a free parameter, and its value is determined so as to obtain the
best agreement between numerical and theoretical data. The result shown in Fig. 8 (dotted line) is
obtained with a"150, but also very di!erent values of a, up to aK1000, yield a good result, i.e.,
no particularly "ne tuning of a is necessary to obtain a very good agreement between theory and
numerical experiment.

4.3. Some remarks

Before moving to the second part of the paper, let us now comment about some points of the
material presented in the "rst part of this Report. In particular, we would like to clarify the meaning
of some of the approximations made and to draw the attention of the reader to some of the points
which are still open. A better understanding of these points could lead, in our opinion, to
a considerable improvement of the theory, which is still developing and can by no means be
considered as a `closeda subject.

What has been presented in this section has a conceptual implication that goes far beyond the
development of a method to analytically compute Lyapunov exponents. Rather, the strikingly
good agreement between analytic and numeric Lyapunov exponents } obtained at the price of
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11 In fact, the simplifying assumptions, made to work out an e!ective (in)stability equation from the full geodesic
deviation equation, might be inadequate for some systems.

a restriction of the domain of applicability11 of the analytic expression worked out for j } has three
main implications:

(i) the local geometry of mechanical manifolds contains all the relevant information about
(in)stability of Hamiltonian dynamics;

(ii) once a good model for the local source of instability of the dynamics is provided, then
a statistical}mechanical-like treatment of the average degree of instability of the dynamics can be
worked out, in the sense that we do not need a detailed knowledge of the dynamics but, by com-
puting global geometric quantities, obtain a very good estimate of the average strength of chaos;

(iii) due to the variational formulation of newtonian dynamics, the Riemannian-geometric frame-
work a priori seems } and actually seemed in the past (as we have pointed out in Section 2)
} the natural framework to investigate the instability of Hamiltonian dynamics, although no
evidence was available at all to con"rm such an idea until the above mentioned development
took place. It is now evident that the e!orts to improve the theory by expanding its domain of
applicability are worthwhile.

We must warn the reader though against `blinda applications of formula (79), i.e. without any idea
about the ful"lment, by the Hamiltonian model under investigation, of the conditions under which
it has been derived.

From a more technical point of view, one of the central results we have presented so far is the
possibility of deriving, from the Jacobi equation, a scalar equation (Eq. (52)) describing the
evolution of the Jacobi "eld J for a geodesic spread on a manifold. We would like to stress that such
a result, though approximate, applies to a wide class of Hamiltonian systems. In fact, the only
hypothesis needed to get such an equation is the quasi-isotropy hypothesis, i.e., the assumption that
R

ijkl
+K(s)(g

ik
g
jl
!g

il
g
jk

). Loosely speaking, such an assumption means that, locally, the mani-
fold can be regarded as isotropic, i.e., there is a neighbourhood of each point where the curvature
can be considered constant. This does not imply at all that there are only small-scale #uctuations.
There can be #uctuations of curvature on many scales, provided that they are "nite and there is
a cuto! at a certain point. The only case in which such an assumption will surely not hold is when
there are curvature #uctuations over all scales. As will become clear in the following, this might
happen when the manifold undergoes a topological change, and for `mechanical manifoldsa this
might happen at a phase transition.

Other approximations come into play when one actually wants to model K(s) along a geodesic
with a stochastic process. It is true that replacing the sectional curvature by the Ricci curvature
requires that the #uctuations are not only "nite, but also small. Moreover, we use global averages
to de"ne the stochastic process, and here it is crucial that the #uctuations do not extend over too
large scales. Thus Eq. (58) has a less general validity than Eq. (52). A way to improve the theory
might be to try to replace the sectional curvature with some quantity related also to the gradient of
the Ricci curvature, in order to make the replacement of sectional curvature less sensitive to the
large scale variations of the Ricci curvature.
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To get an explicit solution of Eq. (52), an even less general situation must be considered, through
the following steps:

(i) using the Eisenhart metric;
(ii) considering standard systems where the kinetic energy does not depend on the q's;
(iii) estimating the characteristic correlation time q of the curvature #uctuations.

As to item (iii), we have already remarked that our estimate given in Eq. (73) is by no means
a consequence of any theoretical result, but only a reasonable estimate which could surely be
improved.

As to (ii), the case of a more general kinetic energy matrix a
ij
Od

ij
, though not conceptually

di!erent, is indeed di!erent in practice and the same "nal result is not expected to hold in that case.
Finally, item (i) should not reduce signi"cantly the generality of the result. In fact, considering the

Eisenhart metric only makes the calculations feasible, and in principle nothing should change, if
one were able to solve Eq. (58) in the case of the Jacobi metric (see the discussion in Ref. [35]).
However, Eisenhart and Jacobi metrics are equivalent for what concerns the computation of the
average instability of the dynamics [35], but they might not be equivalent for other developments of
the theory. This in view of the fact that (M

E
, g

J
) is a manifold which has better mathematical

properties than (M]R2, g
E
): (M

E
, g

J
) is a proper Riemannian manifold, it is compact, all of its

geodesics are in one-to-one correspondence with mechanical trajectories, its scalar curvature does
not identically vanish as is the case of (M]R2, g

E
), it can be naturally lifted to the tangent bundle

where the associated geodesic #ow on the submanifolds of constant energy coincides with the phase
space trajectories.

One could wonder whether the geometric approach is necessary at all to obtain our main results.
Although in principle Eq. (52) could be obtained in many ways, using, e.g., assumptions about the
distribution of the second derivatives of the potential, it is not clear how this should be imple-
mented in practice, while here in the geometrical framework, a concrete scenario has been
developed. In particular some physically reasonable guesses about the curvature and curvature
correlation decay parameter q can be made. Moreover, the good agreement with experiment gives
some con"dence that the approximations made, characterize indeed some of the main geometric
properties of the highly complicated con"guration space.

Let us "nally add a comment on the application of the theory to the calculation of the Lyapunov
exponent for the one-dimensional X> model. We have seen that although the predictions of the
theory compare reasonably well with the numerical simulations, there is an intermediate energy
range in which a correction must be added. As will become clear in the second part, the very "rst
assumption (quasi-isotropy) should not be satis"ed for this model, due to the presence of topology
changes in the mechanical manifolds, in fact the di$culties of the theory begin just at the energy
density which corresponds to the appearance of a large number of critical points of the potential
energy (see next sections).

5. Geometry and phase transitions

In the previous sections we have shown how simple concepts belonging to classical di!erential
geometry can be successfully used as tools to build a geometric theory of chaotic Hamiltonian
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12According to Uhlenbeck [77], the use of the thermodynamic limit as an explanation of the singularities of the
partition function was suggested for the "rst time by Kramers in the 1938 Leiden conference on Statistical Mechanics.

13This has been recently extended to non-equilibrium statistical mechanics via the `chaotic hypothesisa [64].

dynamics. Such a theory is able to describe the instability of the dynamics in classical systems
consisting of a large number N of mutually interacting particles, by relating these properties to the
average and the #uctuations of the curvature of the con"guration space. Such a relation is made
quantitative through Eq. (79), which provides an approximate analytical estimate of the largest
Lyapunov exponent in terms of the above-mentioned geometric quantities, and which compares
very well with the outcome of numerical simulations in a number of cases, two of which have been
discussed in detail at the end of Section 4.

The macroscopic properties of large-N Hamiltonian systems can be understood by means of the
traditional methods of statistical mechanics. One of the most striking phenomena that may happen
in such systems is that when the external parameters (e.g., either the temperature or the energy) are
varied until some critical value is reached, the macroscopic thermodynamical quantities may
suddenly and even discontinuously change, so that, though the microscopic interactions are the
same above and below the critical value of the parameters, its macroscopic properties may be
completely di!erent. Such phenomena are referred to as phase transitions. In statistical mechanics,
phase transitions are explained as true mathematical singularities that occur in the thermodynamic
functions in the limit NPR, the so-called thermodynamic limit12 [78]. Such singularities come
from the fact that the equilibrium probability distribution in con"guration space, which in the
canonical ensemble is the Boltzmann weight

.
#!/

(q
1
,2, q

N
)"

1
Z

exp[!b<(q
1
,2, q

N
)] , (107)

where b"1/k
B
¹, < is the potential energy, and Z":dq e~bV(q) is the con"gurational partition

function, can itself develop singularities in the thermodynamic limit.
The statistical}mechanical theory of phase transitions is one of the most elaborate and successful

physical theories now at hand, and at least as continuous phase transitions are concerned, also
quantitative predictions can be made, with the aid of renormalization-group techniques, which are
in very good agreement with laboratory experiments and numerical simulations. We are not going
to discuss this here, referring the reader to the vast literature on the subject [79}85].

However, the origin of the possibility of describing Hamiltonian systems via equilibrium
statistical mechanics are the chaotic properties underlying the dynamics. In fact, though it is not
possible to prove that generic Hamiltonian systems of the form (1) are ergodic and mixing, the fact
that the trajectories are mostly chaotic (i.e., for the overwhelmingly majority of the trajectories
positive Lyapunov exponents are found) means that such systems can be considered ergodic and
mixing for all practical purposes.13

The observation that chaos is at the origin of the statistical behaviour of Hamiltonian systems
and that chaotic dynamics can be described by means of the geometric methods described above,
naturally leads to the following two questions:
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14As in the "rst part of the paper, we consider only the largest Lyapunov exponent, which is referred to as just the
Lyapunov exponent.

1. Is there any speci"c behaviour of the Lyapunov exponent14 when the system undergoes a phase
transition?

2. What are the geometric properties of the con"guration space manifold in the presence of a phase
transition?

The aim of the present section is to discuss these two questions. We shall "rst give a phenom-
enological description which follows from numerical experiments, and then we shall concentrate on
the particular case of the mean-"eld X>model where the geometrical quantities can be analytically
calculated. From the discussion of these questions and from the (at least partial) answers that
we "nd, we are lead to put forward a topological hypothesis about phase transitions, which will be
discussed in Section 6.

5.1. Chaotic dynamics and phase transitions

In order to look for an answer to question 1 above, we now review the numerical results that
have been obtained until now for various Hamiltonian dynamical systems which show a phase
transition when considered as statistical}mechanical models for macroscopic systems in thermal
equilibrium.

The "rst attempt to look for a chaotic-dynamic counterpart of an equilibrium phase transition is
in the work by Butera and Caravati (BC) [86]. BC considered a two-dimensional X> model, i.e.,
a Hamiltonian dynamical system of the form (1) with the potential energy

<"1! +
Wi,jX

cos(u
i
!u

j
) , (108)

where the u's are angles, i and j label the sites of a square lattice and the sum runs over all
the nearest-neighbour sites. This model is the two-dimensional version of the one studied in
Section 4.2.2. As the temperature is decreased, such a system undergoes a peculiar phase transition
(referred to as the Berez\ inskij}Kosterlitz}Thouless, or BKT, transition) from a disordered phase to
a quasi-ordered phase where, though no true long-range order is present, correlation functions
decay as power laws, as occurs at a critical point [85]. Since there are no singularities in the
"nite-order derivatives of the free energy, the BKT transition is sometimes classi"ed as an
`in"nite-ordera phase transition. BC computed the Lyapunov exponent j as a function of the
temperature, and found that j(¹) followed a rather smooth pattern; however, in a region around
the transition, the dependence of j on ¹ changed from a steeply increasing function to a much less
steep one.

BC's pioneering paper has been the only example of a study of this kind for a long
period. However, very recently there has been a renewed interest in the study of the behaviour of
Lyapunov exponents in systems undergoing phase transitions, and a number of papers
appeared [36}38,87}97] The two-dimensional X>model has been reconsidered, together with the

280 L. Casetti et al. / Physics Reports 337 (2000) 237}341



Fig. 9. Lyapunov exponent j vs. the temperature ¹ for the two-dimensional X>model: the circles refer to a 10]10, the
squares to a 40]40, the triangles to a 50]50, and the stars to a 100]100 lattice, respectively. The critical temperature of
the BKT transition is ¹

C
K0.95 and is marked by a dotted vertical line. From Ref. [36].

Fig. 10. Lyapunov exponent j vs. the temperature ¹ for the three-dimensional X> model, numerically computed on
a N"10]10]10 lattice (solid circles) and on a N"15]15]15 lattice (solid squares), respectively. The critical
temperature of the phase transition is ¹

C
K2.15 and is marked by a dotted vertical line. From Ref. [36].

three-dimensional case, in Ref. [36]. We remark that in three spatial dimensions the X> model
undergoes a standard continuous (second-order) phase transition accompanied by the breaking of
the O(2) symmetry of the potential energy (108). The behaviour of the Lyapunov exponent j as
a function of the temperature ¹ is shown in Figs. 9 and 10.
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The behaviour found for the two-dimensional case con"rms the BC results. The three-dimen-
sional case shows a similar behaviour, but the change of the shape of the j(¹) function near ¹

C
is

somehow sharper than in the previous case.
Dellago and Posch [91] considered an extended X> model, whose potential energy is

<"2!2 +
Wi,jX

cosA
u

i
!u

j
2 B

p
2

, (109)

which includes the standard X> model (108) for p2"2. On a two-dimensional lattice the
transition, which is a continuous BKT transition for p2"2, becomes a discontinuous transition as
p2K100. The results for the Lyapunov exponent j show that for any considered value of p2 there is
a change in the shape of j(¹) close to the critical temperature.

One of the systems which have received considerable attention in this framework is the
so-called lattice u4 model, i.e., a system with a Hamiltonian of the form (1) and a potential energy
given by

<"
J
2

+
Wi,jX

(u
i
!u

j
)2#+

i
C!
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u2
i
#

u
4!

u4
i D , (110)

where the u's are scalar variables, u
i
3[!R,#R], de"ned on the sites of a d-dimensional lattice,

and r2 and u are positive parameters. The lattice u4 model has a phase transition at a "nite
temperature provided that d'1. The existence of such a transition, which belongs to the
universality class of the d-dimensional Ising model, can be proved by renormalization-group
arguments (see e.g. [80,98]). The cases d"2 and 3 have been considered in Refs. [38,37].
Moreover, in Ref. [37] also some vector versions of this model have been considered, namely,
systems with potential energy given by

<"
J
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+
Wi,jX

+
a

(ua
i
!ua
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)2#+

i
G!

r2
2

+
a

(ua
i
)2#

u
4!C+a (ua

i
)2D

2

H , (111)

where a runs from 1 to n, labelling the components of the vectors u
i
"(u1

i
,2, un

i
). The potential

energy (111) is O(n)-invariant; in the case n"1 we recover the scalar model (110). Figs. 11 and 12
show the behaviour of j in the u4 model, in two and three dimensions, respectively.

Again we see that the Lyapunov exponent is sensitive to the presence of the transition, and that
the shape of j(¹) close to the transition is highly model-dependent. Moreover, such a shape can
be signi"cantly di!erent within the same model as its parameters are varied. For instance, in the
u4 model, j can be either a monotonously increasing function of ¹ or can display a maximum close
to ¹

#
, depending on the values of r2 and u [38].

The Lyapunov exponents of systems undergoing phase transitions of the solid}liquid type have
been recently determined numerically: Dellago and Posch (DP) considered, in two dimensions,
a system of hard disks [89], a Lorentz-gas-like model and a Lennard}Jones #uid [90], and, in three
dimensions, a system of hard spheres [92]. DP found that in all these systems the Lyapunov
exponent is sensitive to the phase transition, and again the shape of j is di!erent for di!erent
models, the common feature being that j attains a maximum close, if not at, the transition. Similar
results have been obtained by Mehra and Ramaswamy [93]. Bonasera et al. [87] considered
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Fig. 11. Lyapunov exponent j vs. the energy per particle e, numerically computed for the two-dimensional O(1) u4

model, with N"100 (solid circles), 400 (open circles), 900 (solid triangles), and 2500 (open triangles), respectively. The
critical energy is marked by a vertical dotted line, and the dashed line is the power law e2. From Ref. [38].

Fig. 12. Lyapunov exponent j vs. the temperature ¹ for the three-dimensional u4 model. Full circles correspond to the
O(1) (scalar) case, open circles to the O(2) case, and open triangles to the O(4) case. From Ref. [37].

a classical model of an atomic cluster, whose particles interact via phenomenological pair poten-
tials of the form

v(r)"a e~(br@p)!cA
p
r B

6
(112)
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and of a nuclear cluster, with nucleons interacting via Yukawa pair potentials. Such systems
undergo a so-called `multifragmentationa transition at a critical (model-dependent) temperature
¹

#
. Bonasera et al. computed the Lyapunov exponents of these systems by means of numerical

simulations at di!erent temperatures. The resulting j(¹) of both systems develops a sharp
maximum close to ¹

#
.

The numerical evidence that we have reviewed above clearly shows that the Lyapunov exponent
of a Hamiltonian dynamical system is sensitive to the presence of a phase transition. However, the
interpretation of the observed behaviour as it now stands is very di$cult, because each model
behaves di!erently and the behaviour of j close to the transition does not apparently exhibit any
universal feature: on the contrary, the shape of j(¹) can depend on the values of the parameters of
the model. Moreover, the qualitative behaviour of j(¹) appears to be only weakly dependent on
whether the transition is accompanied by a symmetry breaking or not, as in the case of the X>
model: the shape of j(¹) in two dimensions, where there is not any breaking of the O(2) symmetry of
the potential energy below the BKT transition temperature, is not dramatically di!erent from that
of the three-dimensional case where the phase transition is accompanied by a symmetry breaking.
In the latter case the `kneea of the j(¹) curve is sharper, but it would be di$cult to discriminate
between the two cases only by looking at the j(¹) curve. Therefore, though clearly sensitive to the
presence of a phase transition, the Lyapunov exponent does not seem a `gooda probing observable
for the occurrence of a symmetry-breaking phase transition.

5.2. Curvature and phase transitions

In Section 4 we have seen that the origin of chaos in Hamiltonian mechanics can be understood
from a geometrical point of view, and that the Lyapunov exponents are closely related to
a geometric quantity, i.e., to the #uctuations of the Ricci curvature of the con"guration space. Thus,
it is natural to investigate whether such a geometric observable also has some peculiar behaviour
close to the phase transition. As we shall see in the following, the #uctuations of the curvature do
indeed have such a peculiar behaviour which, in turn, suggests a topological intepretation of the
phase transition itself.

The Ricci curvature along a geodesic of the enlarged con"guration space}time equipped with
the Eisenhart metric, which we denoted by K

R
in the previous sections, is given by the Laplacian

of the potential energy } see Eq. (64). In the case of the X> model we obtain, as already shown
in Section 4.2.2,

K
R
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j
) . (113)

The root-mean-square #uctuation of K
R

divided by the number of degrees of freedom N, i.e.,
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is plotted in Figs. 13 and 14 for the 2-d and 3-d cases, respectively.
In the case of the u4 model with O(n) symmetry, the Ricci curvature K

R
is given by [37,38]
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Fig. 13. Fluctuations of the Ricci curvature (Eisenhart metric), p
k
(¹), vs. the temperature ¹ for the two-dimensional X>

model. The solid circles are numerical values obtained for a 40]40 lattice; the dashed line is only a guide to the eye. The
critical temperature of the BKT transition is ¹

C
K0.95 and is marked by a dotted line. From Ref. [36].

Fig. 14. As Fig. 13, for the three-dimensional X>model. Here N"10]10]10, and the critical temperature of the phase
transition is ¹

#
K2.15. From Ref. [36].

The r.m.s. #uctuation of K
R
, p

k
, is plotted against the energy per degree of freedom, e, in the case

of the two-dimensional O(1) u4 model in Fig. 15, and against the temperature ¹ in the case of
the two-dimensional O(2) u4 model in Fig. 16, and for the three-dimensional O(n) u4 models
in Fig. 17.
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Fig. 15. Root mean square #uctuation of the Ricci curvature (Eisenhart metric) p
k
, divided by the average curvature k

0
,

numerically computed for the two-dimensional O(1) u4 model. The inset shows a magni"cation of the region close to the
transition. Symbols as in Fig. 11. From Ref. [38].

Fig. 16. Curvature #uctuations p
k
vs. the temperature ¹ for the two-dimensional O(2) u4 model, numerically computed on

a square lattice of 30]30 sites. The critical temperature ¹
#

of the BKT transition is located at ¹
#
K1.5. From Ref. [37].

Looking at Figs. 13}17, one can clearly see that when a symmetry-breaking phase transition
occurs, a cusp-like (`singulara) behaviour of the curvature #uctuations is found at the phase
transition point (Figs. 14, 15 and 17), while, when only a BKT transition is present, no cusp-like
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Fig. 17. Curvature #uctuations p
k

vs. the temperature ¹ for the three-dimensional u4 model. Full circles correspond to
the O(1) (scalar) case, open circles to the O(2) case, and open triangles to the O(4) case. From numerical simulations
performed on an 8]8]8 cubic lattice, reported in Ref. [37].

15Although the cusp-like behaviour is lost, indeed some change of behaviour is still visible in Figs. 13 and 16 close to
the critical temperature, so that a BKT transition appears as `intermediatea between the absence of a phase transition
and the presence of a symmetry-breaking phase transition.

pattern is observed15 (Figs. 13 and 16). We can summarize these results by saying that, in general,
curvature #uctuations always show a cusp-like behaviour when a continuous symmetry-breaking
phase transition is present, and, within numerical accuracy, the cusp occurs at the critical
temperature. No counterexamples have yet been found to this general rule.

The fact that the Lyapunov exponent is sensitive to the phase transition can now be understood,
in the light of the fact that, as shown in the "rst part of the present report, chaos can be described
geometrically and, under rather general assumptions, the Lyapunov exponent is closely related to
the #uctuations of the Ricci curvature (see Eq. (80)). However, contrary to the Lyapunov exponent,
which, although sensitive to the phase transition, is not a good probing observable of the presence
of a symmetry-breaking phase transition, the #uctuation of the Ricci curvature, p

k
, is a good

probing observable, for, as plotted as a function of the temperature, it exhibits a clearly peculiar
(`cuspya) pattern when a symmetry-breaking phase transition is present, and a rather smooth
pattern otherwise. The di!erence among j(¹) and p

k
(¹) as probing observables of the phase

transition can be appreciated by comparing Figs. 12 and 17, where j(¹) and p
k
(¹) are reported,

respectively, for the O(n) u4 models. In Fig. 12, the j(¹) curves for di!erent values of n are
qualitatively di!erent, while in Fig. 17 the p

k
(¹) curves look strikingly similar, while being clearly

di!erent from the curve for the 2-d O(2) case (Fig. 16), where only a BKT transition is present. The
same can be said in the case of the 2-d and the 3-d.
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16The results of formula (79) can be improved using procedures which are speci"c of the model under consideration
and which we are not going to describe here (see Ref. [36] for the X> case and Ref. [37] for the u4 case, respectively).

5.2.1. Geometric estimate of the Lyapunov exponent
At this point, it is worthwile to point out that we can apply the geometric formula (79) for the

Lyapunov exponent to estimate j for all these models, since both k
0

and p
k
have been numerically

computed. As shown in Refs. [36}38], one "nds that in general, although the qualitative behaviour
of the Lyapunov exponent is well reproduced, the quantitative agreement between the values of
j extracted from the numerical simulations and those obtained applying Eq. (79) is not good, in
a neighbourhood of the phase transition.

However, this is to be expected, because among the assumptions under which formula (79) was
derived there was the hypothesis that the #uctuations of the curvature should be not too large, and
this is clearly not true close to a phase transition, as we have just shown.16

5.3. The mean-xeld X> model

The mean-"eld XY model [99] describes a system of N equally coupled planar classical rotators.
It is de"ned by a Hamiltonian of class (1) where the potential energy is

<(u)"
J

2N
N
+

i,j/1

[1!cos(u
i
!u

j
)]!h

N
+
i/1

cosu
i
. (116)

Here u
i
3[0, 2p] is the rotation angle of the ith rotator and h is an external "eld. De"ning at each

site i a classical spin vector s
i
"(cosu

i
, sin u

i
) the model describes a planar (XY) Heisenberg

system with interactions of equal strength among all the spins. We consider only the ferromagnetic
case J'0; for the sake of simplicity, we set J"1. The equilibrium statistical mechanics of this
system is exactly described, in the thermodynamic limit, by mean-"eld theory [99]. In the limit
hP0, the system has a continuous phase transition, with classical critical exponents, at ¹

#
"1/2,

or e
#
"3/4, where e"E/N is the energy per particle.

The Lyapunov exponent j of this system is extremely sensitive to the phase transition. In fact,
according to numerical simulations reported in Refs. [94,96,100,101], j(e) is positive for 0(e(e

#
,

shows a sharp maximum immediately below the critical energy, and drops to zero at e
#

in the
thermodynamic limit, where it remains zero in the whole region e'e

#
, which corresponds to the

thermodynamic disordered phase. In fact, in this phase the system is integrable, reducing to an
assembly of uncoupled rotators. These results are valid in the thermodynamic limit NPR in
the sense that they have been obtained by estimating the in"nite N limit of "nite N numerical
simulations [94,96]: in the whole region e'e

#
the Lyapunov exponent, numerically computed for

systems with di!erent numbers of particles N, behaves as jJN~1@3, so that it extrapolates to zero
at NPR.

These results have received a theoretical con"rmation in recent work by Firpo [95] based on the
application of the geometric techniques described in the "rst part of the present paper. Firpo has
computed analytically Sk

R
T and Sd2k

R
T in the thermodynamic limit for the mean-"eld X>model,

showing that such quantities indeed have a singular behaviour at e
#

(see Fig. 18). Using these
quantities and Eq. (79), Firpo has obtained the analytical estimate for j(e) reported in Fig. 19; it is
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Fig. 18. Mean-"eld X> model: analytic expression for the microcanonical averages of the Ricci curvature (solid curve)
and of its #uctuations (dot}dashed curve). From Ref. [95].

Fig. 19. Mean-"eld X> model: analytic expression for the Lyapunov exponent (solid curve). The curves above the
transition are "nite-N results for N"80 and 200: here jJN~1@3. From Ref. [95].

remarkable that also the behaviour jJN~1@3 at e'e
#

has been extracted from this theoretical
calculation. This result gives a theoretical con"rmation to the qualitative behaviour of the
Lyapunov exponent extrapolated from the numerical simulations. Moreover, Firpo's analytical
results are in good quantitative agreement with numerical results reported in Refs. [96,100], also
close to the phase transition and at variance with the cases of the nearest-neighbour X> and
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17More precisely, we considered the enlarged con"guration space-time, endowed with the Eisenhart metric.
18The di!erent surfaces are then said to be di!eomorphic to each other (see Appendix B).

u4 models considered earlier. A tentative explanation of why the application of the geometric
formula (79) gives such good quantitative results in the present case can be that the mean-"eld
character of the model prevents the curvature #uctuations from being too wild.

6. Phase transitions and topology

In the previous section we have reported results of numerical simulations for the #uctuations of
observables of a geometric nature (e.g., con"guration-space curvature #uctuations) related to
the Riemannian geometrization of the dynamics in con"guration space.17 These quantities have
been computed, using time averages, for many di!erent models undergoing continuous phase
transitions, namely u4 lattice models with discrete and continuous symmetries and X> models. In
particular, when plotted as a function of either the temperature or the energy, the #uctuations of
the curvature have an apparently singular behaviour at the transition point. Moreover, we have
seen that the presence of a singularity in the statistical}mechanical #uctuations of the curvature at
the transition point has been proved analytically for the mean-"eld X> model.

The aim of the present section is to try to understand on a deeper level the origin of this peculiar
behaviour. In Section 6.1, we will show, using abstract geometric models, that a singular behaviour
in the #uctuations of the curvature of a Riemannian manifold can be associated with a change in
the topology of the manifold itself. By `topology changea we mean the following. Let us consider
a surface Se which depends on a parameter e in such a way that, upon varying the parameter, the
surface is continuously deformed: as long as the di!erent deformed surfaces can be mapped
smoothly one onto another,18 the topology does not change; on the contrary, the topology changes
if there is a critical value of the parameter, say e

#
, such that the surface Se;e# cannot be mapped

anymore smoothly onto Se:e# .
The observation that a singularity in the curvature #uctuations of a Riemannian manifold, of the

same type as those observed numerically at phase transitions, can be associated with a change in
the topology of the manifold, leads us to conjecture that it is just this mechanism that could be at
the basis of thermodynamic phase transitions. Such a conjecture was originally put forward in
Ref. [36] as follows: a thermodynamic transition might be related to a change in the topology of the
con"guration space, and the observed singularities in the statistical}mechanical equilibrium
measure and in the thermodynamic observables at the phase transition might be interpreted as
a `shadowa of this major topological change that happens at a more basic level. We will refer to this
conjecture as the topological hypothesis (¹H).

The remaining part of the present section is devoted to a discussion of the TH and of its validity.
In Section 6.2.1 we will report on a purely geometric, and thus still indirect, further indication that
the topology of the con"guration space might change at the phase transition, which has been
obtained from numerical calculations for the u4 model on a two-dimensional lattice [102,103].
Then, in Section 6.2.3, we will describe a direct con"rmation of the TH, i.e., we will show
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that a topological change in con"guration space, which can be related with a phase transition,
indeed occurs in the particular case of the mean-"eld X> model [104]. Finally, in Section 6.3
we will reformulate the TH in a more precise way, taking advantage of the previously discussed
examples, and Section 6.4 will be devoted to a general discussion of the many points that are
still open and on the future perspectives of the geometrical and topological approach to statistical
mechanics.

6.1. From geometry to topology: abstract geometric models

Let us now describe how a singular behaviour of the curvature #uctuations of a manifold can be
put in correspondence with a change in the topology of the manifold itself. For the sake of clarity,
we shall "rst discuss a simple example concerning two-dimensional surfaces [36,37], and then we
will generalize it to the case of N-dimensional hypersurfaces [102,103].

The simple geometric model we are going to describe concerns surfaces of revolution. A surface
of revolution S3R3 is obtained by revolving the graph of a function f around one of the axes of
a Cartesian plane, and can be de"ned, in parametric form, as follows [105]:

S(u, v),(x(u, v), y(u, v), z(u, v))"(a(u)cos v, a(u)sin v, b(u)) , (117)

where either a(u)"f (u) and b(u)"u, if the graph of f is revolved around the vertical axis, or
a(u)"u and b(u)"f (u), if the graph is revolved around the horizontal axis; in both cases, u and
v are local coordinates on the surface S: v3[0, 2p] and u belongs to the domain of de"nition of the
function f.

Let us consider now, in particular, the two families of surfaces of revolution de"ned as

Fe"( fe (u)cos v, fe(u)sin v, u) (118a)

and

Ge"(u cos v, u sin v, fe (u)) , (118b)

where

fe (u)"$Je#u2!u4, e3[e
.*/

,#R) , (119)

and e
.*/

"!1
4
. Some cases are shown in Fig. 20.

There exists for both families of surfaces a critical value of e, e
#
"0, corresponding to a change in

the topology of the surfaces: the manifolds Fe are di!eomorphic to a torus T 2 for e(0 and to
a sphere S2 for e'0; the manifolds Ge are di!eomorphic to two spheres for e(0 and to one sphere
for e'0. The Euler}PoincareH characteristic (see Eq. (B.10)) is s(Fe)"0 if e(0, and s(Fe)"2
otherwise, while s(Ge) is 4 or 2 for e negative or positive, respectively.

We now turn to the de"nition and the calculation of the curvature #uctuations on these surfaces.
Let M belong to one of the two families; its Gaussian curvature K is [105]

K"

a@(aAb@!b@aA)
a(b@2#a@2)2

, (120)
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Fig. 20. Some representatives of the two families of surfaces Fe and Ge de"ned in Eqs. (118a) and (118b), respectively.
Each family is divided into two subfamilies by the critical surface corresponding to e

#
"0 (middle members in the

picture). Members of the same subfamily are di!eomorphic, whereas the two subfamilies are not di!eomorphic to each
other. From Ref. [37].

19For instance, SKT(e)"0 for Fe as e(0, while for Ge the same average curvature is positive and diverges as eP0.

where a(u) and b(u) are the coe$cients of Eq. (117), and primes denotes di!erentiation, with respect
to u. The #uctuations of K can be then de"ned as

p2
K
"SK2T!SKT2"A~1P

M

K2 dS!AA~1P
M

KdSB
2
, (121)

where A is the area of M and dS is the invariant surface element. Both families of surfaces exhibit
a singular behaviour in p

K
as ePe

#
, as shown in Fig. 21, in spite of their di!erent curvature

properties on the average.19
We are now going to show that the result we have just obtained for two-dimensional surfaces

has a much more general validity: a generic topology change in an n-dimensional manifold is
accompanied by a singularity in its curvature #uctuations [102]. In order to do that, we have to
make use of some concepts belonging to Morse theory, which will also be used in Section 6.2.3
below; the main concepts of Morse theory are sketched in Appendix B, where also references to the
literature are given.

We consider then a hypersurface of RN which is the u-level set of a function f de"ned in RN,
i.e., a submanifold of RN of dimension n"N!1 de"ned by the equation

f (x
1
,2, x

N
)"u , (122)
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Fig. 21. The #uctuation p
K

of the Gaussian curvature of the surfaces Fe and Ge is plotted vs. e. p is de"ned in Eq. (121),
e is shifted by e

.*/
"0.25 for reasons of clarity of presentation. (a) refers to Ge and (b) refers to Fe . The cusps appear at

e"0 where the topological transition takes place for both Fe and Ge . From Ref. [37].

20This is not a strong assumption: in fact, it can be shown that Morse functions are generic (see Appendix B).

such a hypersurface can then be referred to as f ~1(u). Let us now assume20 that f is a Morse function,
i.e., such that its critical points (i.e., the points of RN where the di!erential df vanishes) are isolated.
One of the most important results of Morse theory is that the topology of the hypersurfaces f ~1(u)
can change only crossing a critical level f ~1(u

#
), i.e., a level set containing at least one critical point

of f. This means that a generic change in the topology of the hypersurfaces can be associated
with critical points of f. Now, the hypersurfaces f~1(u) can be given a Riemannian metric in
a standard way [106], and it is possible to analyze the behaviour of the curvature #uctuations in
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Fig. 22. Fluctuations of the Gauss curvature of a hypersurface f~1(u) of RN vs. u close to a critical point. p2@N
K

is reported
because it has the same dimensions of the scalar curvature. Here dim( f ~1(u))"100, and the Morse indexes are:
k"1, 15, 33, 48, represented by solid, dotted, dashed, long-dashed lines, respectively.

a neighborhood of a critical point. Let us assume, for the sake of simplicity, that this critical point is
located at x

0
"0 and belongs to the level u

#
"0. Any Morse function can be parametrized, in the

neighborhood of a x
0
, by means of the so-called Morse chart, i.e., a system of local coordinates My

i
N

such that f (y)"f (x
0
)!+k

i/1
y2
i
#+N

i/k`1
y2
i

(k is the Morse index of the critical point). Then
standard formulae for the Gauss curvature K of hypersurfaces of RN [106] can be used to compute
explicitly the #uctuations of the curvature, p

K
, of the level set f ~1(u). Numerical results for the

curvature #uctuations are reported in Fig. 22 and show that also at high dimension p2
K

develops
a sharp, singular peak as the critical surface is approached (for computational details, see
Ref. [103]).

6.2. Topology changes in conxguration space and phase transitions

As we have discussed in Section 5, the curvature #uctuations of the con"guration space exhibit
cusp-like patterns in presence of a second-order phase transition. A truly cuspy pattern, i.e., an
analytic discontinuity, is mathematically proven in the case of mean-"eld X>model. In Section 6.1,
we have shown that singular patterns in the #uctuations of the curvature of a Riemannian manifold
can be seen as consequences of the presence of a topology change. Hence, we are led to the
topological hypothesis (TH), i.e., to conjecture that at least continuous, symmetry-breaking phase
transitions are associated with topology changes in the con"guration space of the system.

However, an important question arises, in that the #uctuations of the curvature considered in
Section 5 have been obtained as time averages, computed along the dynamical trajectories of the
Hamiltonian systems under investigation (or as statistical averages computed analytically, as in the
case of the mean-"eld X> model). Now, time averages of geometric observables are usually found
to be in excellent agreement with ensemble averages [24,31,36}38] so that one could argue that the
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above-mentioned singular-like patterns of the #uctuations of geometric observables are simply the
precursors of truly singular patterns due to the fact that the measures of all the statistical ensembles
tend to become singular in the limit NPR when a phase transition is present. In other words,
geometric observables, like any other `honesta observable, already at "nite N would feel the
eventually singular character of the statistical measures, i.e., of the probability distribution
functions of the statistical}mechanical ensembles. If this were the correct explanation, we could not
attribute the cusp-like patterns of the curvature #uctuations to any special geometric features of
con"guration space, and the cusp-like patterns observed in the numerical simulations could not be
considered as (indirect) con"rmations of the TH.

In order to elucidate this important point, three di!erent paths have been followed: (i) purely
geometric information about certain submanifolds of con"guration space has been worked out
independently of the statistical measures in the case of the two-dimensional u4 model, and the
results lend indirect support to the TH [102]; (ii) a direct numerical con"rmation of the TH has
been given in [107] by means of the computation of a topologic invariant, the Euler characteristic,
in the case of a 2d lattice u4 model; (iii) a direct analytic con"rmation of the TH has been found in
the particular case of the mean-"eld X>model [104]. We report on items (i), (ii) and (iii) in Sections
6.2.1, 6.2.2 and 6.2.3, respectively.

6.2.1. Indirect numerical investigations of the topology of conxguration space
In order to separate the singular e!ects due to the singular character of statistical measures at

a phase transition from the singular e!ects due to some topological transition in con"guration
space, the "rst natural step is to consider again p2

K
as an observable, and to integrate it on suitable

submanifolds of con"guration space by means of a geometric measure, i.e. by means of a measure
which has nothing to do with statistical ensemble measures.

Consider as ambient space the N-dimensional con"guration space M of a Hamiltonian system
with N degrees of freedom, which, when NPR, undergoes a phase transition at a certain "nite
temperature ¹

#
(or critical energy per degree of freedom e

#
), and let V"<(u) be its potential

energy per degree of freedom.
Then the relevant geometrical objects are the submanifolds of M de"ned by

M
u
"V~1(!R, u]"Mu3M :V(u)4uN , (123)

i.e., each M
u

is the set Mu
i
NN
i/1

such that the potential energy per particle does not exceed a given
value u. As u is increased from !Rto #R, this family covers successively the whole manifold M.
All the submanifolds M

u
can be given a Riemannian metric g whose choice is largely arbitrary. On

all these manifolds (M
u
, g) there is a standard invariant volume measure

dg"Jdet(g) dq12dqN , (124)

which has nothing to do with statistical measures. Let us "nally de"ne the hypersurfaces R
u

as the
u-level sets of V, i.e.,

R
u
"V~1(u) , (125)

which are nothing but the boundaries of the submanifolds M
u
.
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21 If a surface is parametrically de"ned through the equations xi"xi(z1,2, zk), i"1,2,N then the metric g
ij

induced
on the surface is given by g

ij
(z1,2, zk)"+N

n/1
(Rxn/Rzi)(Rxn/Rzj).

22The principal curvatures are the inverse of the curvature radii measured, at any given point of a surface, in suitable
directions. At a Morse critical point some of these curvature radii vanish.

According to the discussion reported in Section 6.1, an indirect way to study the presence of
topology changes in the family M(M

u
, g)N is to look at the behaviour of the #uctuations of the

Gaussian curvature, p2
K
, de"ned as

p2
K
"SK2

G
TR

u
!SK

G
T2R

u
, (126)

where S ) T stands for integration over the surface R
u
, as a function of u. The presence of cusp-like

singularities of p2
K

for some critical value of u, u
#
, would eventually signal the presence of

a topology change of the family M(M
u
, g)N at u

#
[102]. Such an indirect geometric probing of the

presence of critical points seems an expedient way to probe the possible topology changes of
the manifolds (M

u
, g). In fact, the properties of the manifolds M

u
are closely related to those of the

hypersurfaces MR
u
N
uyu#

, as can be inferred from the equation

P
Mu

fdg"P
u

0

dvPR
v

f DR
v
du/DD+<DD , (127)

where du is the induced measure21 on R
u

and f a generic function [108]. From Morse theory (see
Appendix B) we know that the surface R

u#
de"ned by V"u

#
is a degenerate quadric, so that in its

vicinity some of the principal curvatures [106] of the surfaces R
u!u#

tend to diverge.22 Such
a divergence is generically detected by any function of the principal curvatures and thus, for
practical computational reasons, instead of the Gauss curvature (which is the product of all the
principal curvatures) we shall consider the total second variation of the scalar curvature R (i.e., the
sum of all the possible products of two principal curvatures) of the manifolds (M

u
, g), according to

the de"nition

p2R (u)"[<ol(M
u
)]~1P

Mu

dgCR![<ol(M
u
)]~1P

Mu

dgRD
2

(128)

with R"gkjRl
klj

, where Rl
kij

are the components of the Riemann curvature tensor [see Eq. (A.39)]
and <ol(M

u
)":

Mu
dg. The subsets M

u
of con"guration space are given the structure of Rieman-

nian manifolds (M
u
, g) by endowing all of them with the same metric tensor g. However, the choice

of the metric g is arbitrary in view of probing possible e!ects of the topology on the geometry of
these manifolds.

In Ref. [102] the con"guration spaces of a u4 model, de"ned on a one-dimensional lattice (linear
chain) and on a two-dimensional square lattice have been considered. We recall that in the 2-d case
this system undergoes a phase transition at a "nite temperature, while in the 1-d case no phase
transition is present. Three di!erent types of metrics have been considered, i.e.,

(i) g(1)kl"[A!<(u)]dkl , i.e., a conformal deformation (see Appendix A.3) of the Euclidean #at
metric dkl , where A'0 is an arbitrary constant chosen large enough to be sure that in the
relevant interval of values of u the determinant of the metric is always positive;
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(ii) g(2)kl and g(3)kl are generic metrics (no longer conformal deformations of the #at metric) de"ned by

(g(k)kl )"A
f (k) 0 1

0 I 0

1 0 1B, k"2, 3 , (129)

where I is the (N!2)-dimensional identity matrix, g(2) is obtained by setting
f (2)"(1/N)+a|Zdu4a#A, and g(3) by setting f (3)"(1/N)+a|Zdu6a#A, with A'0, and a labels
the N lattice sites of a linear chain (d"1) or of a square lattice (d"2, N"n]n).

These choices are completely arbitrary, however, and only if metrics of very simple form are
chosen, both analytical and numerical computations are feasible also for rather large values of N.
Thus, the "rst metric has been chosen diagonal, and the other two metrics concentrate in only one
matrix element all the non-trivial geometric information. Moreover, the "rst metric still contains
a reference to the physical potential, whereas the other two de"ne metric structures that are
completely independent of the physical potential and only contain monomials of powers su$-
ciently high that they do not vanish after two successive derivatives have been taken (needed to
compute curvatures). The topology of the subsets of points M

u
and R

u
of RN is already determined

(though well concealed) by the de"nitions of Eqs. (123) and (125); the task is to `capturea some
information about their topology through a mathematical object or structure, de"ned on these sets
of points, which is capable of mirroring the variations of topology through the u-pattern of an
analytic function. This idea follows the philosophy of standard mathematical theories of di!erential
topology, for example, within Morse theory, the information about topology is extracted through
the critical points of any function } de"ned on a given manifold } ful"lling some conditions
(necessary to be a good Morse function), or, within cohomology theory [109], topology is probed
through vector spaces of di!erential forms (the de Rham's cohomology vector spaces) `attacheda to
a given manifold. Provided that good mathematical quantities are chosen as topology-variation
detectors, arbitrary Riemannian metric structures could work as well.

For the above-de"ned metrics g(k), k"1, 2, 3, simple algebra leads from the de"nition of the
scalar curvature (see Appendix A) to the following explicit expressions:

R(1)"(N!1)C
*<

(A!<)2
!

DD+<DD2
(A!<)3A

N
4
!

3
2BD , (130)

R(k)"
1

( f (k)!1)C
DD+I f (k)DD2

2( f (k)!1)
!*I f (k)D, k"2, 3 (131)

where + and * are the Euclidean gradient and Laplacian, respectively, and +I and *I lack the
derivative R/Rua with a"1 in the d"1 case, and lack the derivative R/Rua with a"(1, 1) in the
d"2 case.

The numerical computation of the geometric integrals in Eq. (128) is worked out by means of
a Monte Carlo algorithm [33,103] to sample the geometric measure dg by means of an `import-
ance samplinga algorithm [110] suitably modi"ed. In Figs. 23 and 24 and pR (u) are given for the
one and two-dimensional cases obtained for two di!erent lattice sizes with g(1) (Fig. 23), and at
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Fig. 23. Variance of the scalar curvature of M
u

vs. u computed with the metric g(1). Full circles correspond to the 1d-u4

model with N"400. Open circles refer to the 2d-u4 model with N"20]20 lattice sites, and full triangles refer to 40]40
lattice sites (whose values are rescaled for graphic reasons).

Fig. 24. pR(u) of M
u

vs. u computed for the u4 model with: metric g(2) in 1d, N"400 (open triangles); metric g(2) in 2d,
N"20]20 (full triangles); metric g(3) in 1d, N"400 (open circles); metric g(3) in 2d, N"20]20 (full circles).

given lattice size with g(2,3) (Fig. 23). Peaks of p2R (u) appear at a certain value v
#
, of v in the

two-dimensional case, whereas only smooth patterns are found in the one-dimensional case, where
no phase transition is present.

According to the discussion above, these peaks can be considered as indirect evidence of the
presence of a topology transition in the manifolds M

u
at u"u

#
in the case of the two-dimensional

u4 model. It is, in particular, the persistence of cusp-like patterns of pR(u) independently of the
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Fig. 25. Average potential energy vs. temperature for the 2-d lattice u4 model with O(1) symmetry. Lattice size
N"20]20. The solid line is made out of 200 points obtained as time averages. Full circles represent Monte Carlo
estimates of canonical ensemble averages. The dotted lines locate the phase transition.

metric chosen that lends credit to the idea that this actually re#ects a topological transition. Now,
we want to argue that the topological transition occurring at u

#
is related to a thermodynamic phase

transition which occurs in the u4 model. In order to do that, in Ref. [102] the average potential
energy per particle

u(¹)"SVT (132)

has been numerically computed, as a function of ¹, by means of both Monte Carlo averaging with
the canonical con"gurational measure, and Hamiltonian dynamics. In the latter case the temper-
ature ¹ is given by the average kinetic energy per degree of freedom, and u is obtained as time
average. Fig. 25 shows a perfect agreement between time and ensemble averages. The phase
transition point is well visible at u"u

#
K3.75. Looking at Figs. 23 and 24, we realize that, within

the numerical accuracy, the critical value of the potential energy per particle u
#

where the
topological change occurs equals the statistical}mechanical average value of the potential energy
at the phase transition.

At this point the doubt, formulated at the beginning of this section, about the possible
non-geometrical origin of the `singulara, cusp-like patterns of pR(u) has been dissipated. These
results have been found independently of statistical mechanical measures and of their singular
character in presence of a phase transition. These results are also independent } at least to the
limited extent of the three metric tensors reported above } of the geometric structure given to the
family MM

u
N. Thus, they seem most likely to have their origin at a deeper level than the geometric

one, i.e. at the topologic level. Hence the observed phenomenology strongly hints that some major
change in the topology of the con"guration-space-submanifolds MM

u
N occurs when a second-order

phase transition takes place.
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23The fact that an `elementarya topology change is not su$cient to entail a phase transition and that it is necessary an
abrupt change in the way of changing of topology has been discussed in Ref. [50].

6.2.2. Direct numerical investigation of the topology of conxguration space
Though still based on numerical computations for a special model, a direct evidence of the tight

relation between topology and phase transitions has been obtained by computing the u-depend-
ence of a topologic invariant of the leaves R

u
in the foliation of con"guration space into a family of

equipotential surfaces.
In order to directly probe if and how the topology change } in the sense of a breaking of

diweomorphicity of the surfaces R
u
} is actually the counterpart of a phase transition, a diweomor-

phism invariant has to be computed. This is a very challenging task because of the high dimensional-
ity of the manifolds involved. Moreover, any algorithm of a combinatorial type (like those implied
by simplicial decompositions, i.e. high-dimensional analogs of tesselations with triangles that
are used, for example, in numerical quantum gravity for low-dimensional manifolds) is here
hopeless. Only through a link between analytic and topologic mathematical objects can one hope
to work out some direct information about topology. One such a link is provided by the Gauss}
Bonnet}Hopf theorem that relates the Euler characteristic (see Appendix B) s(R

u
) with the total

Gauss}Kronecker curvature of the manifold, i.e. [105]

s(R
u
)"cPR

u

K
G

dp (133)

which is valid in general for even dimensional hypersurfaces of Euclidean spaces RN [here
dim(R

u
)"n,N!1], and where c"2/<ol(Sn

1
) is twice the inverse of the volume of an n-

dimensional sphere of unit radius; K
G

is the Gauss}Kronecker curvature of the manifold;
dp"Jdet(g)dx1dx22dxn is the invariant volume measure of R

u
and g is the Riemannian metric

induced from RN. The Gauss}Kronecker curvature at a given point of a hypersurface is the product
of the eigenvalues of its so-called shape operator; these eigenvalues are the principal curvatures of
the hypersurface at the given point. The shape operator is constructed through the directional
derivatives of the unit normal vector to the hypersurface at the given point computed in the
n directions of the basis vectors of the plane tangent to the surface at the same point [106].

The numerical application of the Gauss}Bonnet}Hopf theorem has been worked out for a lattice
u4 model in one and two spatial dimensions [103,115,107]. The main result is shown in Fig. 26
where s(R

v
) is reported vs. v. In the 1d case (open circles) a `smootha pattern of s(v) is found,

whereas in the 2d case a cusp-like shaped s(v) shows up with the singular point corresponding to
the phase transition point marked by the vertical dotted line. The parameters are those of the
preceding section, therefore the phase transition point is at v

#
/NK3.75.

These results have two important consequences: (i) the non-constant value of s(v) in the 1d case
clearly shows that topology changes are present even in the absence of phase transitions; (ii) an
abrupt change in the rate of variation of topology with v seems the hallmark of a phase transition.23
Thus, we have direct numerical evidence about the actual implication of topology in the appear-
ance of a phase transition. At the same time we have evidence of a non-simple one-to-one
correspondence between topology changes and phase transitions. This is in full agreement with
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Fig. 26. Euler characteristic s(R
v
) for 1-d and 2-d u4 lattice models. Open circles: 1-d case, N"49; full circles: 2-d case,

N"7]7. The vertical dotted line, computed separately for larger N, accurately locates the phase transition and the
parameters are the same as in Figs. 23, 24 and 25.

what is discussed in the next section about a di!erent kind of potential which can be analytically
investigated.

6.2.3. Topological origin of the phase transition in the mean-xeld XY model
Until now we have not yet given any direct analytic evidence of the validity of the TH. Let us now

consider again the mean-"eld X> model (116). In the case of this particular model it is possible to
show analytically that a topological change in the con"guration space exists and that it can be
related to the thermodynamic phase transition [104].

Let us consider again, as was already done in Section 6.2.1, the family M
v
of submanifolds of the

con"guration space de"ned in Eq. (123); now the potential energy per degree of freedom is that of
the mean-"eld X> model, i.e.,

V(u)"
<(u)
N

"

J
2N2

N
+

i,j/1

[1!cos(u
i
!u

j
)]!

h
N

N
+
i/1

cosu
i
, (134)

where u
i
3[0, 2p]. Such a function can be considered a Morse function on M, so that, according to

Morse theory (see Appendix B), all these manifolds have the same topology until a critical level
V~1(v

#
) is crossed, where the topology of M

v
changes.

A change in the topology of M
v
can only occur when v passes through a critical value of V. Thus,

in order to detect topological changes in M
v

we have to "nd the critical values of V, which means
solving the equations

RV(u)
Ru

i

"0, i"1,2, N . (135)
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For a general potential energy functionV, the solution of the Eqs. (135) would be a formidable task
[111], but in the case of the mean-"eld X> model, the mean-"eld character of the interaction
greatly simpli"es the analysis, allowing an analytical treatment of the Eqs. (135); moreover,
a projection of the con"guration space onto a two-dimensional plane is possible.

We recall that in the limit hP0, the system has a continuous phase transition, with classical
critical exponents, at ¹

#
"1/2, or e

#
"3/4, where e"E/N is the energy per particle. We aim at

showing that this phase transition has its foundation in a basic topological change that occurs
in the con"guration space M of the system. Let us remark that since V(u) is bounded,
!h4V(u)41/2#h2/2, the manifold is empty as long as v(!h, and when v increases beyond
1/2#h2/2 no changes in its topology can occur so that the manifold M

v
remains the same for any

v'1/2#h2/2, and is then an N-torus. To detect topological changes we have to solve Eqs. (135).
To this end it is useful to de"ne the magnetization vector, i.e., the collective spin vector
m"(1/N)+N

i/1
s
i
, which as a function of the angles is given by

m"(m
x
,m

y
)"A

1
N

N
+
i/1

cosu
i
,
1
N

N
+
i/1

sinu
iB . (136)

Due to the mean-"eld character of the model, the potential energy (116) can be expressed as
a function of m alone (remember that J"1), so that the potential energy per particle reads

V(u)"V(m
x
,m

y
)"1

2
(1!m2

x
!m2

y
)!h m

x
. (137)

This allows us to write the Eqs. (135) in the form (i"1,2, N)

(m
x
#h)sinu

i
!m

y
cosu

i
"0 . (138)

Now we can solve these equations and "nd all the critical values of V. The solutions of Eqs. (138)
can be grouped in three classes:

(i) The minimal energy con"guration u
i
"0 ∀i, with a critical value v"v

0
"!h, which tends

to 0 as hP0. In this case, m2
x
#m2

y
"1.

(ii) Con"gurations such that m
y
"0, sinu

i
"0 ∀i. These are the con"gurations in which

u
i
equals either 0 or p; i.e., we have again u

i
"0 ∀i, but also the N con"gurations with u

k
"p and

u
i
"0 ∀iOk, as well as the N(N!1) con"gurations with two angles equal to p and all the

others equal to 0, and so on, up to the con"guration with u
i
"p ∀i. The critical values

corresponding to these critical points depend only on the number of p's, n
p
, so that

v(n
p
)"1

2
[1!(1/N2)(N!2n

p
)2]!(h/N)(N!2n

p
). We see that the largest critical value is, for

N even, v(n
p
"N/2)"1/2 and that the number of critical points corresponding to it is O(2N).

(iii) Con"gurations such that m
x
"!h and m

y
"0, which correspond to the critical value

v
#
"1/2#h2/2, which tends to 1/2 as hP0. The number of these con"gurations grows with N not

slower than N! [104].

Con"gurations (i) are the absolute minima of V, (iii) are the absolute maxima, and (ii) are all the
other stationary con"gurations of V.

Since for v(v
0

the manifold is empty, the topological change that occurs at v
0

is the one
corresponding to the `birtha of the manifold from the empty set; subsequently there are many
topological changes at values v(n

p
)3(v

0
, 1/2] till at v

#
there is a "nal topological change which
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24 It would also be possible to avoid this problem by considering an improved version of Morse theory, referred to as
equivariant Morse theory [112].

Fig. 27. The sequence of topological changes undergone by the manifolds D
v

with increasing v in the limit hP0.

corresponds to the `completiona of the manifold. We remark that the number of critical values in
the interval [v

0
,1/2] grows with N and that eventually the set of these critical values becomes dense

in the limit NPR. However, the critical value v
#

remains isolated from other critical values also
in that limit. We observe that it is necessary to consider a non-zero external "eld h in order that
V is a Morse function, because if h"0 all the critical points of classes (i) and (ii) are degenerate, in
which case topological changes do not necessarily occur.24 This degeneracy is due to the O(2)-
invariance of the potential energy in the absence of an external "eld. To be sure, for hO0, V may
not be a Morse function on the whole of M either, but only on M

v
with v(v

#
, because the critical

points of class (iii) may also be degenerate, so that v
#

does not necessarily correspond to
a topological change. However, this di$culty could be dealt with by using that the potential energy
can be written in terms of the collective variables m

x
and m

y
} as in Eq. (137). This implies that we

consider the system of N spins projected onto the two-dimensional con"guration space of the
collective spin variables. According to de"nition (136) of m, the accessible con"guration space is
now not the whole plane, but only the disk

D"M(m
x
, m

y
): m2

x
#m2

y
41N . (139)

Thus, we want to study the topology of the submanifolds

D
v
"M(m

x
,m

y
)3D: V(m

x
, m

y
)4vN . (140)

The sequence of topological transformations undergone by D
v

can now be very simply deter-
mined in the limit hP0 (see Fig. 27), as follows. As long as v(0, D

v
is the empty set. The "rst

topological change occurs at v"v
0
"0 where the manifold appears as the circle m2

x
#m2

y
"1, i.e.,

the boundary RD of D. Then as v grows D
v

is given by the conditions

1!2v4m2
x
#m2

y
41 , (141)

i.e., it is the ring with a hole centered at (0, 0) (punctuated disk) comprised between two circles of
radii 1 and J2v, respectively. As v continues to grow the hole shrinks and is eventually completely
"lled as v"v

#
"1/2, where the second topological change occurs. In this coarse-grained
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two-dimensional description in D, all the topological changes that occur in M between v"0 and
1/2 disappear, and only the two topological changes corresponding to the extrema of V, occurring
at v"v

0
and v

#
, survive. This means that the topological change at v

#
should be present also in the

full N-dimensional con"guration space, so that the degeneracies mentioned above for the critical
points of class (iii) should not prevent a topological change.

Now, we want to argue that the topological change occurring at v
#

is related to the thermodyn-
amic phase transition of the mean-"eld XY model. Since the Hamiltonian is of the standard form
(1), the temperature ¹, the energy per particle e and the average potential energy per particle
u"SVT obey, in the thermodynamic limit, the following equation:

e"
¹

2
#u(¹) , (142)

where we have set Boltzmann's constant equal to 1. Substituting the values of the critical energy per
particle e

#
"3/4 and of the critical temperature ¹

#
"1/2 we get u

#
"u(¹

#
)"1/2, so that the

critical value of the potential energy per particle v
#
where the last topological change occurs equals

the statistical-mechanical average value of the potential energy at the phase transition,

v
#
"u

#
. (143)

Thus although a topological change in M occurs at any N, and v
#

is independent of N, there is
a connection of such a topological change and a thermodynamic phase transition only in the limit
NPR, hP0`, when indeed a thermodynamic phase transition can be de"ned.

A similar kind of di!erence, as here between topological changes in mathematics (for all N) and
phase transitions in physics (for NPR only), also occurs in other contexts in statistical mechan-
ics, e.g. in non-equilibrium stationary states [113].

Since not all topological changes correspond to phase transitions, those that do correspond,
remain to be determined to make the conjecture of Ref. [36] more precise. In this context, we
consider one example where there are topological changes very similar to the ones of our model
but no phase transitions, i.e., the one-dimensional XY model with nearest-neighbour interactions,
whose Hamiltonian is of class (1) with interaction potential

<(u)"
1
4

N
+
i/1

[1!cos(u
i`1

!u
i
)]!h

N
+
i/1

cos u
i
. (144)

In this case the con"guration space M is still an N-torus, and using again the potential energy
per degree of freedom V"</N as a Morse function, we can see that also here there are
many topological changes in the submanifolds M

v
as v is varied in the interval [0, 1/2] (after

taking hP0`). However, there are critical points of the type u
j
"u

k
"u

l
"2"p,

u
i
"0 ∀iOj, k, l,2; at variance with the mean-"eld XY model, it is now no longer the number of

p's that determines the value of V at the critical point, but rather the number of domain walls, n
$
,

i.e., the number of boundaries between `islandsa of p's and `islandsa of 0's: v(n
$
)"n

$
/2N. Since

n
$
3[0,N], the critical values lie in the same interval as in the case of the mean-"eld XY model; but

now the maximum critical value v"1/2, instead of corresponding to a huge number of critical
points, which rapidly grows with N, corresponds to only two con"gurations with N domain
walls, which are u

2k
"0, u

2k`1
"p, with k"1,2, N/2, and the reversed one. There are also
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`spin-wave-likea critical points, i.e., such that eihk"const e2pikn@N with n"1,2, N [114]; their
critical energies are comprised in the interval above but again there is not a critical value associated
to a huge number of critical points.

Thus, this example suggests the conjecture that a topological change in the con"guration space
submanifolds M

v
occurring at a critical value v

#
, is associated with a phase transition in the

thermodynamic limit only if the number of critical points corresponding to the critical value v
#

is
su$ciently rapidly growing with N. On the basis of the behaviour of the mean-"eld XY model we
expect then that such a growth should be at least exponential. Furthermore, a relevant feature
appears to be that v

#
remains an isolated critical value also in the limit NPR: in the mean-"eld

XY model this holds only if the thermodynamic limit is taken before the hP0` limit: this appears
as a topological counterpart of the non-commutativity of the limits hP0` and NPR in order to
get a phase transition in statistical mechanics.

The sequence of topological changes occurring with growing V makes the con"guration space
larger and larger, till at v

#
the whole con"guration space becomes fully accessible to the system

through the last topological change. From a physical point of view, this corresponds to the
appearance of more and more disordered con"gurations as ¹ grows, which ultimately lead to the
phase transition at ¹

#
. We remark that the connection between the topology of the con"guration

space and the physics of continuous phase transitions made here via the potential energy, in
particular Eq. (143), only makes sense in the thermodynamic limit, where the potential energy per
particle u(¹) is well de"ned since its #uctuations vanish then at least as 1/JN. This holds for our
mean-"eld model, since for such a model, all #uctuations are absent. In the case of a real
continuous (critical) phase transition the non-trivial role of #uctuations may complicate the present
picture.

6.3. The topological hypothesis

The statistical behaviour of physical systems described by natural Hamiltonians is obtained, in
the canonical ensemble, from the partition function in phase space

Z
N
(b)"Pdpdqe~bH(p,q)"A

p
bB

N@2

Pdq e~bV(q)

"A
p
bB

N@2

P
=

0

du e~buPR
u

dp
DD+<DD

, (145)

where p"(p
1
,2, p

N
), dp"<N

i/1
dp

i
, q"(q

1
,2, q

N
), dq"<N

i/1
dq

i
; R

u
"M(q

1
,2, q

N
)3RND

<(q
1
,2, q

N
)"uN are equipotential hypersurfaces of con"guration space and dp is the measure on

R
u

induced from RN. The last term of the equation above shows that for Hamiltonians (1) the
relevant statistical information is contained in the canonical con"gurational partition function
ZC

N
":dq exp[!b<(q)]. Moreover, the last term of Eq. (145), written using a co-area formula

[108], decomposes ZC
N

into an in"nite summation of geometric integrals :R
u
dp/DD+<DD. This de-

composition provides the point of attack for the formulation of a general hypothesis about a deep
link between geometry, topology and thermodynamics and, obviously, phase transitions. In fact,
once the potential energy <(q) is given, the con"guration space of the system is automatically
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foliated into the family MR
u
N
u|R of these equipotential hypersurfaces. Now, from standard statistical

mechanical arguments concerning the equivalence of canonical and microcanonical ensembles
we know that, at any given value of the inverse temperature b, the larger the number N of particles,
the closer to some R

u6
are the microstates that signi"cantly contribute to the statistical averages

of thermodynamic observables. The hypersurface R
u6

is the one associated with u6 ,ub"
(ZC

N
)~1:<dq

i
<(q)e~bV(q), the average potential energy computed at a given b. Thus, at any b, if N is

very large the e!ective support of the canonical measure shrinks very close to a single R
v
"R

ub
. On

the basis of this and what was found in [36,104,102], we formulate the following.
Topological hypothesis: The basic origin of a phase transition lies in a topological change of the

support of the measure describing a system. This change of topology induces a change of the measure
itself at the transition point.

This hypothesis stipulates that some change of the topology of the MR
u
N, occurring at some

u
#
"u

#
(b

#
), could be the origin of the singular behaviour of thermodynamic observables at a phase

transition rather than measure singularities which in this view are induced from a deeper level
where the topology changes take place.

In other words, the claim is that the canonical measure should `feela a big and sudden change } if
any } of the topology of the equipotential hypersurfaces of its underlying support, with as
a consequence, the appearance of the typical signals of a phase transition, i.e. almost singular (at
"nite N) energy or temperature dependences of the averages of appropriate observables. The larger
N, the narrower the e!ective support is of the measure } as discussed above } and hence the sharper
the mentioned signals can be, until true singularities appear in the NPR limit.

We emphasize though that not all topological transitions lead to physical phase transitions. At
present the precise connection between topological transitions and phase transitions still has to be
clari"ed in many respects. Certain is that not every topological transition corresponds to a phase
transition, as has been discussed in Sections 6.2.2 and 6.2.3. Rather it seems that, on the basis of
present evidence, a phase transition corresponds to a super-combination of many simultaneous
topological transitions taking place, where many might mean at least exponentially growing with
the number of particles. It seems therefore more like a supertopologically constructed transition.
This is illustrated analytically by the above discussed XY mean-"eld model, where an exponential
crowding of topological transitions occurs on one side of the phase transition. Though such an
analysis has not been possible for a numerically treated lattice u4 model, on the other hand, like
the Euler characteristic s clearly shows, a phase transition corresponds to an abrupt transition
between di!erent rates of change in the topology above and below the phase transition point; no
such information is available for the analytic XY mean-"eld model where the calculation of s has
not yet been done.

6.4. Open questions and future developments

1. The phase space trajectories of dynamical systems described by Hamiltonian functions of the
form (1), i.e.,

H"

1
2

N
+
i/1

p2
i
#<(u) ,
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where the u's and the p's are, respectively, the coordinates and the conjugate momenta, are
bound to the constant energy hypersurfaces R

E
of the 2N-dimensional phase space spanned by

the u's and the p's. Therefore, it would be natural to investigate the relationship between the
topology variations of these hypersurfaces in phase space and phase transitions. The Hamiltonian
H would be the Morse function in this case. Moreover, having already considered the role
played by the R

u
of con"guration space, we can wonder what is the relationship between

topology changes in con"guration space and phase space, respectively. Such a relationship
is somehow subtle. At "rst sight all the critical points of con"guration space are embodied also
in critical points of phase space, in fact all the critical points of H are such that, ∀i, p

i
"0 and

+
i
<(u)"0. However, the critical points of H physically correspond to vanishing kinetic energy,

so that, if those topology changes of the R
u

that are associated to a phase transition were
to correspond to topology changes of the R

E
} because the critical points of H incorporate those

of <(u) } then the critical potential energy density and the critical total energy density at a phase
transition should coincide, which is not the case. An argument to clarify this point can be given
[50] by observing that the dynamics does not equally sample the whole R

E
: the larger N, the

smaller the relative #uctuations of the potential energy Sd2<T1@2/S<T and kinetic energy
Sd2KT1@2/SKT, respectively, are. Thus, by putting v,S<T and t,SKT, we can assume that,
at large N and given energy E, the momenta mainly live close to the hypersphere
SN~1
t

"M(p
1
,2, p

N
)3RN D +N

i/1
1
2
p2
i
"tN and the Lagrangian coordinates mainly live close to the

equipotential hypersurface RN~1
v

with v#t"E. Therefore, though the microcanonical
measure mathematically extends over a whole energy surface, as far as physics is concerned, at
very large N a non-negligible contribution to the microcanonical measure is, in practice, given
only by a small subset of an energy surface. This subset can be approximately modelled by
the product manifold RN~1

v
]SN~1

t
. Since the kinetic energy submanifold SN~1

t
is a hypersphere at

any t, a change in the topology of RN~1
v

directly entails a change of the topology of RN~1
v

]SN~1
t

,
that is of the e!ective model-manifold for the subset of R

E
where the dynamics mainly `livesa at

a given energy E.
This con"rms that, as long as we are interested only in classical Hamiltonian systems of the

standard form (1), we can restrict our geometrical and topological investigation to the submani-
folds of the N-dimensional con"guration space M.

2. A recent and important advance has been achieved at a more mathematical level. In Refs.
[103,115,116] a theorem has been proved that establishes the necessity of topological changes of the
equipotential hypersurfaces R

u
for the appearance of "rst- or second-order thermodynamic phase

transitions. The theorem applies to a wide class of "nite-range potentials, bound below, describing
systems con"ned in "nite regions of space with continuously varying coordinates. The proof
proceeds by showing that, under the crucial assumption of di!eomorphicity of the R

u
in an

arbitrary interval of values for u, the Helmholtz free energy is uniformly convergent in N to its
thermodynamic limit, at least within the class of twice di!erentiable functions, in a corresponding
interval of temperature.

This theorem con"rms the general validity of the TH and ensures that for a wide class of physical
potentials the mathematical framework of di!erential topology is adequate to describe, at least,
"rst- and second-order phase transitions. There is no proof of suzciency. On the basis of the
discussions in Sections 6.2.2, 6.2.3 and 6.3 we already know that a simple loss of di!eomorphicity of
the R

u
is not su$cient to lead to a phase transition.
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A thorough investigation of those classes of topology changes that are responsible for the
appearance of phase transitions is at present the main challenge of this new point of view about
phase transitions and certainly represents a topic that will remunerate the e!orts addressed to it.

3. Let us "nally highlight some interesting related topics.

(i) We might speculate about the possibility of relating universal quantities of the theory of critical
phenomena, like critical exponents, to some topological counterpart; in fact a notion of
universality arises quite naturally in a topological framework.

(ii) Topology provides a common ground for the roots of both dynamics and thermodynamics:
insofar as the dynamics of the system, i.e. the motion of the trajectory in phase space, takes
place in what was called before the support of the statistical measure, it is clear that the nature
of the trajectory will crucially depend on the topology of the manifold to which it belongs. This
therefore strenghtens the interest of a dynamical treatment of phase transitions giving new
emphasis to the microcanonical ensemble and thereby joining other recent developments in the
"eld [117]. Since the dynamical approach does not depend on whether a system is in statistical
equilibrium, non-equilibrium, or in a metastable state (like a glass and, more generally,
amorphous materials) a dynamical approach to phase transitions might also be important for
systems whose thermodynamical state is not well de"ned.

(iii) The fact that the topological changes appear at any N opens a new possibility to study
transitional phenomena in xnite systems, like nuclear and atomic clusters, polymers and
proteins, or other biological systems, as well as for nano and mesoscopic structures.
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Appendix A. Summary of Riemannian geometry

In the following, we brie#y recall some essential concepts and notations of Riemannian di!eren-
tial geometry which are used in the main text. The present section is only meant to facilitate the
reader to follow the main text of the Report, so that our discussion will not be a rigorous treatment
of the subject. For a more elaborate discussion, we refer the reader to a textbook of general
relativity (e.g., the classic Landau and Lifshitz's book [118] or the more recent and complete, but
still very clear and readable, textbook by Wald [119]). A more mathematically oriented, but still
readable by physicists, introduction to the subject is given by do Carmo [59]; a comprehensive and
rigorous treatment, which, however, goes far beyond what is needed to follow the exposition in the
main text, can be found in Kobayashi and Nomizu [120].

The Einstein summation convention over repeated indices is always understood unless explicitly
stated to the contrary. Moreover, we follow throughout the paper the usual convention to suppress
the dependence of the components of vector and tensor quantities on the (proper) time and, in
general, only indicate it explicitly when this dependence is absolutely relevant.

A.1. Riemannian manifolds

A set M is called a diwerentiable manifold if it can be covered with a collection, either "nite or
denumerable, of charts, such that each point of M is represented at least on one chart, and the
di!erent charts are di!erentiably connected to each other. A chart is a set of coordinates on
the manifold, i.e., it is a set of n real numbers (x1,2, xn) which denote the `positiona of a point on
the manifold. The number n of coordinates of a chart is the same for each connected part of the
manifold (and for the whole manifold if the latter is connected, i.e., it cannot be split in two disjoint
parts which are still manifolds); such a number is called the dimension of the manifold M. The union
of the charts on M is called an atlas of M.

A.1.1. Vectors and tensors
A vector (more precisely, a tangent vector), can be de"ned using curves on the manifold M. Given

a curve c in M, represented in local coordinates by the parametric equations x"u(t), we de"ne
a tangent vector at P3M as the velocity vector of the curve in P, i.e.,

v"c5 "lim
t?0

u(t)!u(0)
t

, u(0)"P , (A.1)

so that the n components of the tangent vector v are given by

vi"
dui

dt
. (A.2)

The set of all the tangent vectors of M in P is a linear space, referred to as the tangent space of M in
P, and denoted by ¹

P
M. Each tangent space is isomorphic to an n-dimensional Euclidean space.
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25The origin of this notation is in the fact that vectors can be de"ned as directional derivatives on M (see e.g.
Ref. [119]).

Given a chart (x1,2, xn) in a neighborhood of P, a basis (X
1
,2, X

n
) of ¹

P
M can be de"ned, so

that a generic vector v is expressed as a sum of the X
i
's weighted by its components,

v"viX
i
. (A.3)

The basis MX
i
N is called a coordinate basis of ¹

P
M, and its components X

i
are often denoted25 by

R/Rxi. The basis depends on the chart: choosing another chart, (x1@,2, xn@), we get another basis
MX@

i
N. The components of v in the two di!erent bases are connected by the following rule:

vi@"vj
Rxi@
Rxj

, (A.4)

referred to as the vector transformation rule. Indeed, one can de"ne a vector as a quantity
whose components transform according to Eq. (A.4). The union of all the tangent spaces of the
manifold M,

¹M" Z
P|M

¹
P
M (A.5)

is a 2n-dimensional manifold and is referred to as the tangent bundle of M.
A vector xeld < on M is an assignment of a vector v

P
at each point P3M. If f is a smooth

function,

<( f )D
P
"v

P
( f ) (A.6)

is a real number for each P3M, i.e., v( f ) is a function on M. If such a function is smooth,< is called
a smooth vector xeld on M. The curves u(t) which satify the di!erential equations

u5 "<(u(t)) (A.7)

are called the trajectories of the "eld <, and the mapping u
t
:MCM which maps any point P of

M along the trajectory of< emanating from P is called the yow of<. Given two vector "elds<,=,
one can de"ne the commutator as the vector "eld [<,=] such that

[<,=]( f )"<(=( f ))!=(<( f )) , (A.8)

i.e., in terms of the local components,

[<,=]j"<i
R=j

Rxi
!=i

R<j

Rxi
. (A.9)

We note that, if MX
i
N is a coordinate basis,

[X
i
, X

j
]"0 ∀i, j (A.10)

and that, conversely, given n non-vanishing and commuting vector "elds which are linearly
independent, there always exists a chart for which these vector "elds are a coordinate basis.

Tangent vectors are not the only vector-like quantities that can be de"ned on a manifold M:
there are also cotangent vectors, which can be de"ned as follows. Let us recall that the dual space
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<H of a vector space < is the space of linear maps from < to the real numbers. Given a basis of
<, Mu

i
N, a basis of <H, MuiHN, called the dual basis, is de"ned by

uiH(u
j
)"di

j
. (A.11)

The dual space of ¹M, ¹HM, is called the cotangent bundle of M. Its elements are called cotangent
vectors, or sometimes covariant vectors (while the tangent vectors are sometimes denoted as
contravariant vectors). The dual basis elements are usually denoted as dx1,2, dxn, i.e., dxi is such
that dxi(R/Rxj)"di

j
. The components u

i
of cotangent vectors transform according to the rule

u@
i
"u

j

Rxj

Rx@i
(A.12)

to be compared with Eq. (A.4). The common rule is to use subscripts to denote the components of
dual vectors and superscripts for those of vectors.

A (k, l)-tensor ¹ over a vector space < is a multilinear map

¹ :
<H]2]<H
hggiggj

k 5*.%4

]
<]2]<
hgigj

l 5*.%4

CR , (A.13)

i.e., acting on k dual vectors and l vectors, ¹ yields a number, and it does so in such a manner that if
we "x all but one of the vectors or dual vectors, it is a linear map in the remaining variable. A (0,0)
tensor is a scalar, a (0, 1) tensor is a vector, and a (1, 0) tensor is a dual vector. The space T(k, l) of
the tensors of type (k, l) is a linear space; a (k, l)-tensor is de"ned once its action on k vectors of the
dual basis and on l vectors of the basis is known, and since there are nknl independent ways of
choosing these basis vectors, T(k, l) is a nk`l-dimensional linear space. Two natural operations can
be de"ned on tensors. The "rst one is called contraction with respect to the ith (dual vector) and the
jth (vector) arguments and is a map

C :¹3T(k, l)CC¹3T(k!1, l!1) (A.14)

de"ned by

C¹"

n
+
p/1

¹(2, vp*
hij

i

,2;2, vp
hij

j

,2) . (A.15)

The contracted tensor C¹ is independent of the choice of the basis, so that the contraction is a well
de"ned, invariant, operation. The second operation is the tensor product, which maps an element
T(k, l)]T(k@, l@) into an element of T(k#k@, l#l@), i.e., two tensors ¹ and ¹@ into a new tensor,
denoted by ¹?¹@, de"ned as follows: given k#k@ dual vectors v1H,2, vk`k{H and l#l@ vectors
w
1
,2, w

l`l{
, then

¹?¹@(v1*,2, vk`k{*; w
1
,2, w

l`l{
)"¹(v1*,2, vk*; w

1
,2, w

l
)

¹@(vk`1*,2, vk`k{*; w
l`1

,2, w
l`l{

) . (A.16)

The tensor product allows one to construct a basis for T(k, l) starting from a basis MvkN of< and its
dual basis Mvl*N: such a basis is given by the nk`l tensors Mvk1

?2?vkk
?vl1H?2?vllHN. Thus,

every tensor ¹3T(k, l) allows a decomposition

¹"

n
+

k1 ,2,ll/1

¹k1
2kkl1

2ll vk1
?2?vllH , (A.17)
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26Or, equivalently, g(v,w)"0 ∀w3¹
P
M if and only if v"0; the two statements are equivalent because g is

a symmetric tensor.

the numbers ¹k1
2kkl12ll are called the components of ¹ in the basis MvkN. The components of the

contracted tensor C¹ are

(C¹)k1
2kk~1l1

2ll~1
"¹k1

2p2kkl1
2p2ll (A.18)

(remember the summation convention), and the components of the tensor product ¹?¹@ are

(¹?¹@)k1
2kk`k{l12ll`l{

"¹k1
2kkl12ll¹{kk`1

2kk`k{ll`1
2ll`l{

. (A.19)

All these results are valid for a generic vector space, so that they hold, in particular, for the vector
spaces of the tangent bundle ¹M of M, over which tensors (and, analogously to vector "elds, tensor
xelds) can be de"ned exactly as above.

A.1.2. Riemannian metrics
The in"nitesimal square distance on M, i.e., the length element ds2 (also referred to as the metric)

can be de"ned at each point P3M by means of a (0, 2)-tensor g, provided it is symmetric, i.e.,
g(v,w)"g(w, v), and non-degenerate, i.e., g(v,w)"0 ∀v3¹

P
M if and only if w"0.26 In fact,

a g with these properties induces on the tangent bundle ¹M a nondegenerate quadratic form
(called the scalar product),

g(v,w)"Sv,wT :¹M]¹MCR . (A.20)

Then it is possible to measure lengths on the manifold. A manifold M, equipped with a scalar
product, is called a (pseudo)Riemannian manifold, and the scalar product is referred to as
a (pseudo)Riemannian structure on M. If the quadratic form (A.20) is positive de"nite, then one
speaks of a (proper) Riemannian metric. In the latter case the squared length element is always
positive. For instance, one can de"ne the length of a curve as

l(c)"Pc JSc5 , c5 Tdt . (A.21)

The curves c which are extremals of the length functional are called the geodesics of M.
In a coordinate basis, we can expand the metric g as

g"g
ij

dxi?dxj , (A.22)

so that one de"nes the invariant (squared) length element on the manifold, in local coordinates, as

ds2"g
ij

dxidxj . (A.23)

The scalar product of two vectors v and w is given, in terms of g, by

Sv,wT"g
ij
viwj"v

j
wj"viw

i
. (A.24)

In the above equation we have made use of the fact that g estabilishes a one-to-one correspondence
between vectors and dual vectors, i.e., in components,

g
ij
vj"v

i
. (A.25)
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27One could also consider tensor "elds, but for the sake of simplicity we de"ne connections using vectors.

For this reason, the components of the inverse metric g~1 are simply denoted by gij, instead of (g~1)ij,
and allow to pass from dual vector (covariant) components to vector (contravariant) components:

gijv
j
"vi . (A.26)

This operation of raising and lowering the indices can be applied not only to vector, but also to
tensor components. This allows us to pass from (k, l) tensor components to the corrseponding
(k#1, l!1) tensor components and vice versa. What does not change in the operation is the sum
k#l which is called the rank (or the order) of the tensor.

A.2. Covariant diwerentiation

The introduction of a di!erential calculus on a manifold which is not Euclidean is complicated
by the fact that ordinary derivatives do not map vectors into vectors, i.e., the ordinary derivatives of
the components of a vector w, dwi/dt, taken for instance at a point P along a given curve c(t), are not
the components of a vector in ¹

P
M, because they do not transform according to rule (A.4). The

geometric origin of this fact is that the parallel transport of a vector from a point P to a point Q on
a non-Euclidean manifold does depends on the path chosen to join P and Q. Since in order to de"ne
the derivative of a vector at P, we have to move that vector from P to a neighboring point along
a curve and then parallel transport it back to the original point in order to measure the di!erence,
we need a de"nition of parallel transport to de"ne a derivative; conversely, given a (consistent)
derivative, i.e., a derivative which maps vectors into vectors, one could de"ne the parallel transport
by imposing that a vector is parallel transported along a curve if its derivative along the curve is
zero. The two ways are conceptually equivalent: we follow the "rst way, by introducing the notion
of a connection and then using it to de"ne the derivative operator. Such a derivative will be referred
to as the covariant derivative.

A (linear) connection on the manifold M is a map + such that, given two vector "elds27 A and B, it
yields a third "eld +

A
B with the following properties:

1. +
A
B is bilinear in A and B, i.e., +

A
(aB#bC)"a+

A
B#b+

A
C and +aA`bBC"a+

A
C#b+

B
C;

2. +
f (A)

B"f (+
A
B);

3. (Leibnitz rule) +
A

f (B)"(R
A
f )B#f (+

A
B), where R

A
is the ordinary directional derivative in the

direction of A.

The parallel transport of a vector< along a curve c, whose tangent vector "eld is c5 , is then de"ned
as the (unique) vector "eld =(t)"=(c(t)) along c(t) such that

1. =(0)"<;
2. +c5="0 along c.

The notion of covariant derivative now immediately follows: the covariant derivative D</dt of
< along c is given by the vector "eld

D<
dt

"+c5 < . (A.27)
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On the basis of Eq. (A.27), with a certain abuse of language, one often refers to +
X
> as the covariant

derivative of > along X, where X and > are generic vector "elds. Among all the possible linear
connections, and given a metric g, there is one and only one which (i) is symmetric, i.e.,

+
X
>!+

Y
X"[X,>] ∀X,> (A.28)

and (ii) conserves the scalar product, i.e., the scalar product of two parallel vector "elds P and P@ is
constant along c,

d
dt

SP,P@T,0 . (A.29)

Such a linear connection is obviously the natural one on a Riemannian manifold, and is referred to
as the Levi}Civita (or Riemannian) connection. Whenever we refer to a covariant derivative without
any speci"cation, we mean the covariant derivative induced by the Riemannian connection.

The components of the Riemannian connection + with respect to a coordinate basis MX
i
N are the

Christowel symbols, given by

Ci
jk
"Sdqi,+

Xj
X

k
T (A.30)

and are given, in terms of the derivatives of the components of the metric, by the following formula:

Ci
jk
"1

2
gim(R

j
g
km

#R
k
g
mj
!R

m
g
jk

) , (A.31)

where R
i
"R/Rxi. The expression in local coordinates of the covariant derivative (A.27) of a vector

"eld < is then

D<i

dt
"

d<i

dt
#Ci

jk

dxj

dt
<k . (A.32)

A.2.1. Geodesics
The geodesics, which were already de"ned as the curves of extremal length on the manifold, can

also be de"ned as self-parallel curves, i.e., curves such that the tangent vector c5 is always parallel
transported. Thus, geodesics are the curves c(t) which satisfy the equation (referred to as the
geodesic equation)

Dc5
dt

"0 (A.33)

whose expression in local coordinates follws from Eq. (A.32), and is

d2xi

dt2
#Ci

jk

dxj

dt
dxk

dt
"0 . (A.34)

Since the norm of the tangent vector c5 of a geodesic is constant, Ddc/dtD"c, the arc length of
a geodesic is proportional to the parameter

s(t)"P
t2

t1
K
dc
dt Kdt"c(t

2
!t

1
) . (A.35)
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When the parameter is actually the arc length, i.e., c"1, we say that the geodesic is normalized.
Whenever we consider a geodesic, we assume it is normalized, if not explicitly stated otherwise.
This means that the Eqs. (A.34) are nothing but the Euler}Lagrange equations for the length
functional along a curve c(s) parametrized by the arc-length

l(c)"Pc ds . (A.36)

Given a geodesic c(s) on M, there exists a unique vector "eld G on ¹M such that its trajectories are
(c(s), c5 (s)). Such a vector "eld is called the geodesic xeld and its #ow the geodesic yow on M.

A.3. Curvature

The curvature of a Riemannian manifold (M, g) is } intuitively } a way of measuring how much
the manifold deviates from being Euclidean. The curvature tensor, also known as the
Riemann}Christowel tensor, is a tensor of order 4 de"ned as

R(X,>)"+
X
+

Y
!+

Y
+

X
!+

*X,Y+
, (A.37)

where + is the Levi}Civita connection of M. Observe that if M"RN, then R(X,>)"0 for all the
pairs of tangent vectors X,>, because of the commutativity of the ordinary derivatives. In addition,
R measures the non-commutativity of the covariant derivative: in fact, if we choose a coordinate
system Mx

1
,2,x

n
N, we have, since [R/Rx

i
, R/Rx

j
]"0,

RA
R
Rx

i

,
R
Rx

j
B"+

.@.xi
+
.@.xj

!+
.@.xj

+
.@.xi

. (A.38)

In local coordinates, the components of the Riemann curvature tensor (considered here as
a (1, 3)-tensor) are given by

Ri
jkl

"

RCi
jl
Rxk

!

RCi
kl
Rxj

#Cr
jl
Ci

kr
!Cr

kl
Ci
jr

. (A.39)

Thus, given a metric g, the curvature R is uniquely de"ned. A manifold (M, g) is called yat when the
curvature tensor vanishes.

Given a positive function f 2, a conformal transformation is the transformation

(M, g)C (M, g8 ); g8 "f 2g . (A.40)

Two Riemannian manifolds are said conformally related if they are linked by a conformal
transformation. In particular, a manifold is (M, g) conformally yat if it is possible to "nd a conformal
transformation which sends g into a #at metric. Conformally #at manifolds exhibit some remark-
able simpli"cations for the calculation of the curvature tensor components (see e.g. [65]; an
application is given in Section 3.3).

Closely related to the curvature tensor is the sectional } or Riemannian } curvature, which we
de"ne now. Let us consider two vectors u, v3¹

P
M, and let us put

Du'vD"(DuD2DvD2!Su, vT)1@2 , (A.41)

L. Casetti et al. / Physics Reports 337 (2000) 237}341 315



which is the area of the two-dimensional parallelogram determined by u and v. If Du'vDO0 the
vectors u, v span a two-dimensional subspace pL¹

P
M. We de"ne the sectional curvature at the

point P relative to p, as the quantity:

K(P; u, v)"K(P,p)"
SR(v, u)u, vT

Du'vD2
(A.42)

which can be shown to be independent of the choice of the two vectors u, v3p. In local coordinates,
Eq. (A.42) becomes

K(P; u, v)"R
ijkl

uivjukvl
Du'vD2

. (A.43)

The knowledge of K for the N(N!1) planes p spanned by a maximal set of linearly independent
vectors completely determines R at P.

If dim(M)"2 then K coincides with the Gaussian curvature of the surface, i.e., with the product
of the reciprocals of two curvature radii.

A manifold is called isotropic if K(P,p) does not depend on the choice of the plane p. The
remarkable result } Schur's theorem [59] } is that in this case K is also constant, i.e. it does not
depend on the point P either.

Some `averagesa of the sectional curvatures are very important. The Ricci curvature K
R

at P in
the direction v is de"ned as the sum of the sectional curvatures at P relative to the planes
determined by v and the N!1 directions orthogonal to v, i.e., if Me

1
,2, e

N~1
, v"e

N
N is an

orthonormal basis of ¹
P
M and p

i
is the plane spanned by v and e

i
,

K
R
(P, v)"

N~1
+
i/1

K(P,p
i
) . (A.44)

The scalar curvature R at P is the sum of the N Ricci curvatures at P,

R(P)"
N
+
i/1

K
R
(P, e

i
) . (A.45)

In terms of the components of the curvature tensor, such curvatures can be de"ned as follows (in
the following formulae, we drop the dependence on P, because it is understood that the compo-
nents are local quantities). We "rst de"ne the Ricci tensor as the two-tensor whose components, R

ij
,

are obtained by contracting the "rst and the third indices of the Riemann tensor

R
ij
"Rk

ikj
, (A.46)

then

K
R
(v)"R

ij
vivj . (A.47)

The right-hand side of Eq. (A.47) is called `saturationa of R
ij

with v. The scalar curvature can be
obtained as the trace of the Ricci tensor,

R"Ri
i
. (A.48)
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In the case of a constant curvature } or isotropic } manifold, the components of the Riemann
curvature tensor have the remarkably simple form

R
ijkl

"K(g
ik
g
jl
!g

il
g
jk

) , (A.49)

where K is the constant sectional curvature, so that the components of the Ricci tensor are

R
ij
"Kg

ij
(A.50)

and all the above de"ned curvatures are constants, and are related by

K"

1
N!1

K
R
"

1
N(N!1)

R . (A.51)

A.4. The Jacobi equation

In this subsection we give a derivation of the Jacobi equation, already introduced in the
main text as Eq. (27). We will proceed as follows: "rst, we will de"ne the geodesic separation
vector "eld J, then we will show that the "eld J is actually a Jacobi "eld, i.e., obeys the Jacobi
equation.

Let us de"ne a geodesic congruence as a family of geodesics Mcq(s)"c(s, q) D q3RN issuing from
a neighbourhoodI of a point of a manifold, smoothly dependent on the parameter q, and let us "x
a reference geodesic c(s, q

0
). Denote then by c5 (s) the vector "eld tangent to c(s, q

0
) in s, i.e., the

velocity vector "eld whose components are

c5 i"
dxi

ds
(A.52)

and by J(s) the vector "eld tangent in q
0

to the curves c
s
(q) for a "xed s, i.e., the vector "eld of

components

Ji"
dxi

dq
. (A.53)

The "eld J will be referred to as the geodesic separation xeld, and measures the distance between
nearby geodesics, as is shown in Fig. 28.

Let us now show that J is a Jacobi "eld. First of all, we notice that the "eld J commutes with c5 ,
i.e., [c5 ,J]"0. In fact, from the de"nition of the commutator (Eq. (A.9)) and from the de"nitions of
J, Eq. (A.53), and of c5 , Eq. (A.52), we have

[c5 ,J]i"c5 j
RJi

Rxj
!Jj

Rc5 i
Rxj

"

Rxj

Rs
RJi

Rxj
!

Rxj

Rq
Rc5 i
Rxj

"

RJi

Rs !

Rc5 i
Rq (A.54)

and using again Eqs. (A.53) and (A.52), we "nd that

RJi

Rs "

R
Rs
Rxi

Rq "

R
Rq
Rxi

Rs "

Rc5 i
dq

, (A.55)
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Fig. 28. Pictorial description of the de"nition of the geodesic separation vector J. From Ref. [22].

so that [c5 , J]"0. Now, let us compute the second covariant derivative of the "eld J, +2c5 J. First of
all, let us recall that our covariant derivative comes from a Levi}Civita connection, which is
symmetric (see Eq. (A.28)), so that

+c5 J!+
J
c5 "[c5 , J] (A.56)

and having just shown that [c5 , J]"0, we can write

+c5 J"+
J
c5 (A.57)

Now, using this result, and the fact that +c5 c5 "0 because c6 is a geodesic, we can write

+2c5 J"+c5 +c5 J"+c5 +J
c5 "[+c5 ,+J

]c5 , (A.58)

from which, using the de"nition of the curvature tensor (Eq. (A.37)) and, again, the vanishing of the
commutator [c5 ,J], we get

+2c5 J"R(c5 ,J)c5 , (A.59)

which is nothing but the Jacobi equation (27), written in compact notation.
It is worth noticing that the normal component J

M
of J, i.e., the component of J orthogonal

to c5 along the geodesic c, is again a Jacobi "eld, since we can always write J"J
M
#jc5 : one

immediately "nds then that the velocity c5 satis"es the Jacobi equation, so that J
M

must obey the
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same equation. This allows us to restrict ourselves to the study of the normal Jacobi "elds, as we
have already done in the main text.

Appendix B. Summary of elementary Morse theory

The purpose of this Appendix is to recall the main ideas and concepts of Morse theory which
are relevant for the main text of the paper. For a more elaborate discussion we refer the reader to
Refs. [121}123].

Morse theory, also referred to as critical point theory, links the topology of a given manifold
M with the properties of the critical points of smooth (i.e., with in"nitely many derivatives)
functions de"ned on it. Morse theory links local properties (what happens at a particular point of
a manifold) with global properties (the topology, i.e., the shape, of the manifold as a whole). Two
manifolds M and M@ are topologically equivalent if they can be smoothly deformed one into the
other: a tea cup is topologically equivalent to a doughnut, but it is not topologically equivalent to
a ball. In fact a ball has no holes, while both a tea cup and a doughnut have one hole. To de"ne
precisely what a `smooth deformationa is, one has to resort to the notion of a diweomorphism.
A di!eomorphism is a smooth one-to-one map, whose inverse is smooth. Then M can be smoothly
deformed into M@ if there exists a di!eomorphism t which maps M into M@"t(M). If such
a di!eomorphism exists, we say that M and M@ are then diweomorphic. Thus the notion of
`topological equivalencea we referred to has now a precise meaning.

For the sake of simplicity, we shall consider only compact, "nite-dimensional manifolds: most of
the results can be extended not only to noncompact manifolds, but also to in"nite-dimensional
manifolds modeled on Hilbert spaces (see [123]).

The key ingredient of Morse theory is to look at the manifold M as decomposed in the level sets
of a function f. Let us recall that the a-level set of a function f: MCR is the set

f~1(a)"Mx3M : f (x)"aN , (B.1)

i.e., the set of all the points x3M such that f (x)"a. Now, M being compact, any function f has
a minimum, f

.*/
, and a maximum, f

.!9
, so that

f
.*/

4f (x)4f
.!9

∀x3M . (B.2)

This means that the whole manifold M can be decomposed in the level sets of f: in fact, one can
build M starting from f~1( f

.*/
) and then adding continuously to it all the other level surfaces up to

f~1( f
.!9

). To be more precise, one de"nes the `part of M below aa as

M
a
"f~1(!R, a]"Mx3M: f (x)4aN , (B.3)

i.e., each M
a
is the set of the points x3M such that the function f (x) does not exceed a given value a;

as a is varied between f
.*/

and f
.!9

, M
a

describes the whole manifold M.
For our purposes, we need to restrict the class of functions we are interested in to the class of

Morse functions, which are de"ned as follows. Given a manifold M of dimension n and a smooth
function f: MCR, a point x

#
3M is called a critical point of f if df (x

#
)"0, while the value f (x

#
) is

L. Casetti et al. / Physics Reports 337 (2000) 237}341 319



28We note that this result is valid even if f is not a Morse function; it is su$cient that it is a smooth function.

called a critical value. The function f is called a Morse function on M if its critical points
are nondegenerate, i.e., if the Hessian matrix of f at x

#
, whose elements in local coordinates

are

H
ij
"

R2f
RxiRxj

(B.4)

has rank n, i.e., has only non-zero eigenvalues. This means that there are no directions along which
one could move the critical point, so that there are no lines (or surfaces, or hypersurfaces) made of
critical points. As a consequence, one can prove that the critical points x

#
of a Morse function, and

also its critical values, are isolated. It can be proved also that Morse functions are generic: the space
of the Morse functions is a dense subset of the space of the smooth functions from M to R. A level
set f ~1(a) of f is called a critical level if a is a critical value of f, i.e., if there is at least one critical point
x
#
3f ~1(a).
The main results of Morse theory are the following:

1. If the interval [a, b] contains no critical values of f, then the topology of f~1[a, v] does not
change for any v3(a,b]. This result28 is sometimes called the non-critical neck theorem. The
reason for this terminology will be made clear in the following.

2. If the interval [a, b] contains critical values, the topology of f ~1[a, v] changes in correspondence
with the critical values themselves, in a way which is completely determined by the properties of
the Hessian of f at the critical points.

3. Some topological invariants of M, i.e., quantities that are the same for all the manifolds
which have the same topology as M, so that they characterize unambigously the topology
itself, can be estimated and sometimes computed exactly once all the critical points of f are
known.

Without giving explicit proofs, which can be found in Ref. [123], let now us discuss in more detail
items 1}3 above.

B.1. The non-critical neck theorem

If there are no critical values in the interval [a, b], there exists a di!eomorphism which
sends f~1[a, b] into the Cartesian product f~1(a)][a,b]. This means that the shape of f ~1[a,b]
is that of a multi-dimensional cylinder, or a neck (from which the name `non-critical necka),
if f ~1(a) is simply connected, because the Cartesian product of a circle and an interval is a
cylinder. This might be better understood with the aid of a two-dimensional example. Suppose
that M is two-dimensional, and that the level set f~1(a) is topologically equivalent to a circle
(see Fig. 29).

Then one can construct a di!eomorphism explicitly as the #ow of the gradient vector "eld of
f, +f, whose #ow lines are orthogonal to the level surfaces of f and are depicted as the lines with the

320 L. Casetti et al. / Physics Reports 337 (2000) 237}341



Fig. 29. A non-critical neck. The lines with the arrows are the #ow lines of +f, and the ellipses are the level sets of f.

29This follows from the implicit function theorem.

arrows in Fig. 29. This #ow has no singularities if there are no critical values of f, so that the level set
f~1(a) is transported up to f~1(b) along the #ow lines of +f without changing its topology. As
a consequence,

f~1[a, b]+f~1(a)][a,b]+f ~1(b)][a,b] , (B.5)

where `x+ya must be read as `x is di!eomorphic to ya.

B.2. Critical points and topology changes

In the neighborhood of a regular point P, N(P), there always exists a coordinate system such that
f can be written as its "rst-order Taylor expansion,29 setting the origin of such coordinates in P, in
the form

f (x)"f (0)#
Rf
Rxi

xi#2 ∀x3N(P) . (B.6)

Geometrically, this means that in the neighbourhood of a regular point the level sets of f look like
hyperplanes in Rn, because they are the level sets of a linear function.

But what if P is a critical point of f ? A fundamental result by Morse, called the Morse lemma, is
that if f is a Morse function then there always exists in N(P) a coordinate system (called a Morse
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Fig. 30. Some examples of e-level sets near a critical point (the critical value of the function is set to 0). Upper left: n"2,
critical point of index k"2; upper right: n"2, critical point of index k"1; lower left: n"3, critical point of index k"0;
lower right: n"3, critical point of index k"2.

chart) such that f is given by its second-order Taylor polynomial

f (x)"f (0)#
R2f
RxiRxj

xixj#2 ∀x3N(P) . (B.7)

With a suitable rotation of the coordinate frame, MxiNC MyiN, expansion (B.7) can always be reduced
to the canonical diagonal form

f (y)"f (0)!
k
+
i/1

(yi)2#
n
+

i/k`1

(yi)2#2 ∀u3N(P) . (B.8)

Close to P, the level sets of f are the level sets of a quadratic function, so that, geometrically, they are
non-degenerate quadrics, like hyperboloids or ellipsoids, which become degenerate at P. The
number of negative eigenvalues of the Hessian matrix, k, is called the index of the critical point.
Passing through the critical level, the shape of the level sets of f changes dramatically, in a way that
is completely determined by the index k. Some examples in two and three dimensions are given
in Fig. 30.
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Fig. 31. Two-dimensional handles: H(0) is the product of a 0-disk (a point) and a 2-disk, so that it is a 2-disk; H(1) is the
product of two 1-disks, i.e., of two intervals, so that it is a strip; H(2) is again a 2-disk as H(0) is.

The change undergone by the submanifolds M
a
as a critical level is passed is described using the

concept of `attaching handlesa. A k-handle H(k) in n dimensions (04k4n) is a product of two
disks, one k-dimensional (Dk) and the other (n!k)-dimensional (Dn~k):

H(k)"Dk]Dn~k . (B.9)

In two dimensions, we can have either 0-handles, which are two-dimensional disks or 1-handles,
which are the product of two one-dimensional disks, i.e., of two intervals, so that they are stripes, or
2-handles, which are again two-dimensional disks (Fig. 31). In three dimensions (see Fig. 32), we
have 0-handles which are solid spheres, 1-handles which are the product of a disk and an interval,
so that they are solid cylinders, 2-handles which are the same as 1-handles, and 3-handles which are
the same as 0-handles (Fig. 31).

In more than three dimensions it is di$cult to visualize handles: however, there is still the duality
of the n"2 and 3 cases, i.e., k and n!k handles are topologically equivalent.

Having de"ned handles, we can state the main result of Morse theory as follows.

Theorem. Suppose that there is one (and only one) critical value c in the interval [a, b], and that it
corresponds to only one critical point of index k. Then the manifold M

b
arises from M

a
by attaching

a k-handle, and the transition occurs precisely at the critical level c. Everything goes in the same way if
there are m'1 critical points, with indices k

1
,2, k

m
on the critical level f~1(c); in this case M

b
arises

from M
a

by attaching m disjoint handles of types k
1
,2, k

m
.

Let us see how this works in a simple example. Consider as our manifold M a two-dimensional
torus standing on a plane (think of a tyre in a ready-to-roll position), and de"ne a function f on it as
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Fig. 32. Three-dimensional handles: H(0) is the product of a 0-disk (a point) and a 3-disk (a ball), so that it is a ball; H(1) is
the product of a 1-disk (an interval) and a 2-disk, so that it is a tube; H(2) is as H(1), and H(3) is as H(0).

Fig. 33. The critical points and critical levels of the height function on a two-dimensional torus.

the height of a point of M above the #oor level. If the z-axis is vertical, f is the orthogonal projection
of M onto the z-axis. Such a function has four critical points, and the corresponding four critical
levels of f, which will be denoted as c

0
, c

1
, c

2
, c

3
, respectively, are depicted in Fig. 33. We can build
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Fig. 34. The building of a two-dimensional torus by attaching handles: (a) attaching a 0-handle, (b) attaching a 1-handle,
(c) attaching a 1-handle again, (d) attaching a 2-handle to complete the torus. The symbol `+a means `is di!eo-
morphic toa.

our torus in separate steps: each step will correspond to the crossing of a critical level of f. The steps are
pictorially described in Fig. 34. As long as a(0, the manifold M

a
is empty. At a"c

0
"0 we cross the

"rst critical value, corresponding to a critical point of index 0. This means that we have to attach
a 0-handle (a disk) to the empty set. Any M

a
with 0(a(c

1
is di!eomorphic to a disk, as we can see

by cutting a torus at any height between 0 and c
1

and throwing away the upper part. At c
2

we meet
the second critical point, which now has index 1, so that we have to attach a 1-handle (a stripe) to the
previous disk, obtaining a sort of a basket. Such a basket can be smoothly deformed into a U-shaped
tube: in fact, if we cut a torus at any height between c

1
and c

2
and we throw away the upper part,

we get a U-shaped tube. The third critical point c
2

is again a point of index 1, so we have to glue
another stripe to the tube. What we obtain can be smoothly deformed into a full torus with only the
polar cap cut away from it. The last critical point has index 2, so that the crossing of it corresponds
to the gluing of a 2-handle (a disk), which is just the polar cap we needed to complete the torus.

B.3. Topological invariants

Morse theory can be used also to give estimates, and sometimes to compute exactly, some
topological invariants of our manifold M. For a (two-dimensional) surface, a very important
topological invariant is the genus g, which equals the number of handles of the surface. The
generalization to n dimensions of the genus is given by the set of the Betti numbers b

k
(M), 04k4n,

which are the fundamental topological invariants of an n-dimensional manifold, and completely
describe its topology. For hyperspheres, all the Betti numbers are zero. Using the Betti numbers we
can obtain another topological invariant, the Euler characteristic s(M), which is nothing but the
alternating sum of the b

k
:

s(M),
n
+
k/0

(!1)kb
k
(M) . (B.10)

For (two-dimensional) surfaces, s"2!2g holds.
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Now let us consider a generic Morse function f on M and let us de"ne the Morse numbers k
k
(M)

as follows: k
k

is the total number of critical points of f on M which have index k. It turns out that
the Morse numbers of a manifold are upper bounds of the Betti numbers, i.e., the following (weak)
Morse inequalities hold:

b
k
(M)4k

k
(M), k"0,2, n . (B.11)

Actually, a result stronger than Eqs. (B.11) holds, which states that alternate sums of two,
three, four, 2 subsequent Betti numbers are bounded from above by the alternate sums of
the corresponding Morse numbers. Starting from this result one can prove the following
identity:

s(M)"
n
+
k/0

(!1)kk
k
(M) (B.12)

and this provides a way of computing exactly the Euler characterstic of a manifold once all the
critical points of a Morse function are known.

Among all the Morse functions on a manifold M, there is a special class (called perfect Morse
functions) for which the Morse inequalities (B.11) hold as equalities. Perfect Morse functions
characterize completely the topology of a manifold. It is possible to prove that the height func-
tion on the torus we considered above is a perfect Morse function [123]. However, there are no
simple general recipes to construct perfect Morse functions (this is actually an active area of
research).

Appendix C. Chaos in Hamiltonian dynamical systems

For a long time the equations of Newtonian mechanics have been the paradigm of classical
determinism. Only quite recently has it been realized that `determinisma and `predictabilitya are
far from being the same concept, and that predictability also requires the stability of the solutions of
the dynamical di!erential equations. Determinism implies that, once an initial condition is given,
the trajectory is uniquely determined for all later times; stability means that two initially close
trajectories will remain close in the future (more precisely, their distance will grow slower than
a power of the time). If this is not true, it becomes impossible to predict the evolution of a system
even for very small times, as explained, for instance, by Feynman [124]:

It is true classically that if we knew the position and the velocity of every particle in the world,
or in a box of gas, we could predict exactly what would happen. And therefore the classical
world is deterministic. Suppose, however, that we have a "nite accuracy and do not know
exactly where just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than one part in a billion, we "nd an
even larger error in the position after the collision. And that is ampli"ed, of course, in the next
collision, so that if we start with only a tiny error it rapidly magni"es to a very great
uncertainty. To give an example: if water falls over a dam, it splashes. If we stand nearby, every
now and then a drop will land on our nose. This appears to be completely random, yet such
a behavior would be predicted by purely classical laws. The exact position of all the drops
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depends upon the precise wigglings of the water before it goes over the dam. How? the tiniest
irregularities are magni"ed in falling, so that we get complete randomness. Obviously, we
cannot predict the position of the drops unless we know the motion of the water absolutely
exactly.
Speaking more precisely, given an arbitrary accuracy, no matter how precise, one can
"nd a time long enough that we cannot make predictions valid for that long a time. Now
the pint is that this length of time is not very large. It is not that the time is millions of years
if the accuracy is one part in a billion. The time goes, in fact, only logarithimically with
the error, and it turns out that in only a very, very tiny time we lose all our information. If
the accuracy is taken to be one part in billions and billions and billions } no matter how
many billions we wish, provided we do stop somewhere } then we can "nd a time less than the
time it took to state the accuracy } after which we can no longer predict what is going to
happen!

As long as non-linear dynamical systems are considered, stability is the exception rather than the
rule. Even if this relies } at least from a conceptual point of view } upon mathematical results which
have been known since the end of the last century, its importance has only been completely realized
with the aid of a new and powerful approach: numerical simulation. The very complicated
structure of some trajectories which can arise in non-linear dynamical systems was discovered by
PoincareH [1] in the late 19th century, but the physics community became fully aware of the
existence and of the meaning of these structures only they were visualized by computer simulation
in the work of HeH non and Heiles [61].

The instability we are referring to is known as intrinsic stochasticity of the dynamics, or
`deterministic chaosa. These terms mean that the dynamics, being completely deterministic, yet
exhibits some features that make it indistinguishable from a random process. The characteristic
feature of a chaotic system, which is at the basis of the unpredictability of its dynamics, is the
sensitive (exponential) dependence on initial conditions: the distance between two trajectories
which originate in very close-by points in phase space grows exponentially in time so that the
system looses the memory of its initial conditions. Regular dynamics, i.e., quasiperiodic motion, is
} as far as conservative systems are considered } a `weaka property, because it is destroyed by very
small perturbations of the system. On the contrary, chaos is a strong property, because given
a dynamical system where chaos is present, in many cases it will be present even after the system
has been subjected to signi"cant perturbations [125].

Here we recall brie#y the main concepts of the theory of Hamiltonian dynamical systems which
are necessary for the understanding of the material on chaos presented in this report. The main
goal of this Appendix is then to provide the reader with a de"nition of the Lyapunov exponents and
of a motivation for the introduction of these quantities as a `measurea of chaos in a dynamical
system.

A very good introduction to the subject is given in Lichtenberg and Lieberman's classic book
[125], and, at a more pedagogical level, in Tabor's [126] and Ott's textbooks [127]. An interesting
selection of reprints can be found in MacKay and Meiss [128]. We assume the reader is familiar, at
least at a basic level, with the concepts of ergodicity and mixing. A discussion on these topics would
be far beyond the scope of the present Report; a good introduction can be found in any of the
references just mentioned above.
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30The origin of the term is as follows: such subsets are invariant because if a trajectory starts on one of them, it remains
there forever; they are called tori, because they are topologically equivalent to multi-dimensional tori.

C.1. A simple example of chaotic dynamics: the perturbed pendulum

Throughout the paper we have been concerned with Hamiltonian dynamical systems with
a large number of degrees of freedom. However, the main features of chaos can be better
appreciated starting with an example of a system with only one degree of freedom, subjected to an
external perturbation: the forced pendulum. Although the behaviour of many degree of freedom is
much more complicated, nevertheless some of the essential features of chaos are already present in
this simple example.

The forced pendulum is a system obeying the following equation of motion:

qK#sin q"e sin(q!ut) . (C.1)

The phase space of the forced pendulum is three dimensional, because in addition to the coordinate
q and to the momentum p"q5 , one has to take into account also the time t, because the forcing
term on the right-hand side of Eq. (C.1) depends explicitly on time. The forced pendulum is,
however, a Hamiltonian system, and since the dimension of the phase space of autonomous
Hamiltonian dynamical systems is 2N, where N is the number of degrees of freedom, it is
customary to refer to systems like the forced pendulum as to systems with `1.5 degrees of freedoma.

As long as e"0, the system obeying Eq. (C.1) is a simple pendulum, and its Hamiltonian

H"

p2

2
!cos q (C.2)

is an integral of motion, so that its value, the energy E, is a constant of the motion and the system is
integrable, as every one-degree-of-freedom autonomous Hamiltonian systems is. The word `integr-
ablea is used here in a wider sense than its immediate meaning `such that the equations of motion
can be solveda; a Hamiltonian system is integrable when it has a su$ciently large number of
integrals of motion (N, for an autonomous system with N degrees of freedom), such that its
trajectories do not explore the whole phase space, but are con"ned to lower-dimensional subsets
called invariant tori.30 When N"1, each invariant torus coincides with a trajectory. Some of these
are depicted in Fig. 35. We remark that there are two distinct classes of trajectories: oscillations,
which correspond to bounded motions, and rotations, which are unbounded. The two classes are
separated by a curve called the separatrix. The separatrix is the trajectory pursued by the pendulum
when it starts precisely at the unstable equilibrium point (p, q)"(0,$p) with E"1, i.e., just the
energy that is required to come back to the same point (note that q"p and !p must be
identi"ed). The motion on the separatrix requires an in"nite amount of time.

But what happens if eO0? Once eO0, no matter how small, system (C.1) is no longer integrable,
and the separatrix, which was a unique curve in the e"0 case, splits into two distinct invariant
curves. These curves must intersect transversally each other in"nitely many times, as PoincareH
showed for the "rst time [1]. These intersections are referred to as homoclinic intersections, and
force the trajectories to fold themselves giving rise to a very complicated structure: in PoincareH 's
own words [1]
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Fig. 35. Phase-space trajectories of a simple pendulum. The closed curves are the oscillations, the curves above and
below the separatrix S are clockwise and counterclockwise rotations, respectively.

31This section has been obtained as a stroboscopic PoincareH section [126], so that each point on the plot corresponds
to an intersection of a trajectory of the system with the planes t"2np/u.

these intersections form a sort of texture, or of a net whose meshes are in"nitely tight; each of
these two curves can never intersect itself, but has to fold in a complicated way as to intersect
all the meshes of the net an in"nite number of times. One is amazed by the complexity of this
picture, which I do not even attempt to draw.

As a consequence of the presence of these intersections, in a neighborhood of the region in phase
space which was occupied by the separatrix in the integrable case, a so-called chaotic sea suddenly
appears. The chaotic sea is the region irregularly "lled by dots in Fig. 36, where a two-dimensional
section31 of the 3-d phase space of the system is shown. If we now follow the evolution of two
intially close points in the chaotic sea, we see that their separation grows exponentially in time, so
that the dynamics in the chaotic sea is unpredictable.

The appearance, in phase space, of irregular regions like the chaotic sea could justify by itself the
use of the term `chaotic dynamicsa. However, there are also other properties of the dynamics
described by Eq. (C.1) which justify the use of such a term. For example, if we introduce a symbolic
coding of the dynamics in which the symbol 0 is associated with each passage through the point
q"0 with q5 '0 and the symbol 1 to each passage through the same point with q5 (0, then given
any bi-in"nite sequence of zeros and ones, for example generated by coin tosses, this sequence
corresponds to a real trajectory of system (C.1). Aspects of the motion of the system, though
deterministic, is thus indistinguishable from a random process.

We can intuitively understand the origin of such a behaviour if we think that when the phase
point is on a trajectory very close to the separatrix, an in"nitesimal variation may qualitatively
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Fig. 36. Section of the phase space of a perturbed pendulum, showing the appearance of chaotic seas close to the
separatrix of the unperturbed system (the solid line in the "gure). The dots are obtained from a single trajectory issuing
from a point very close to the unperturbed separatrix. The amplitude of the perturbation is e"10~4.

change the character of the motion (e.g., from oscillations to rotations). This is an example of the
sensitive dependence on initial conditions that, in general, leads to the exponential separation of
initially close-by trajectories.

This example is extremely simple but contains the essential features of the problem. In fact, even
the case of a Hamiltonian system with N degrees of freedom can be treated in a similar way and
shows analogous, though much more complicated, results. In that case, there is no need of an
external forcing to get chaos, for as N'1 an autonomous, non-linear Hamiltonian system is
generically non-integrable (the integrable systems being a very small subset of all the possible
systems). However, even in the simple low-dimensional cases, by means of concepts like homoclinic
intersections, it is possible only to give a qualititative description of the onset of chaos, but
a quantitative description of the stochastic regions is impossible, i.e., it is impossible to compute
how fast two initially close-by points will separate. For N-dimensional systems, the situation is
obviously even worse: there exists a method, which is a generalization of PoincareH 's method,
obtained by Mel'nikov [129] and later by Arnol'd [130], which allows one to show the existence of
homoclinic intersections near separatrices for very small perturbations even for large systems, but
again there is no possibility of describing quantitatively the stochastic regions.

To obtain quantitative informations on chaotic dynamics we must introduce the concept of
Lyapunov exponent.

C.2. Lyapunov exponents

We now give a de"nition and an explanation of the Lyapunov exponents. Our discussion will be
aimed at showing how to de"ne and compute the Lyapunov exponents for a dynamical system
which is de"ned by a system of ordinary di!erential equations, i.e., for a #ow, because Hamiltonian
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32This notation follows from that the dynamics of the vector m takes place in the tangent space ¹
x(t)

M of the phase
space M.

dynamical systems belong to this class. For a more general discussion of Lyapunov exponents,
see [131].

From a physical point of view, given a trajectory of a dynamical system, it is important to "nd
answers to the following questions: Is the trajectory chaotic? And if so, how strong is the chaos, or
how fast do two initially close-by points separate in phase space, i.e., how long should we wait until
the system exhibits its chaotic feature? The concept of Lyapunov exponents is introduced to answer
these questions, since Lyapunov exponents are de"ned in order to provide an average measure of the
rate of exponential divergence of nearby orbits in phase space, which is the distinctive feature of chaos.

Lyapunov exponents are de"ned for a given trajectory of a dynamical system, and this allows us
to give a de"nition of a chaotic trajectory as follows: a trajectory is said to be chaotic if its (largest)
Lyapunov exponent is positive.

We now give a de"nition of the Lyapunov exponents. Let us consider a dynamical system whose
trajectories in an n-dimensional phase space M are the solutions of the following system of
ordinary di!erential equations:

x5
1

" X
1
(x

1
,2,x

n
) ,

F F

x5
n

" X
n
(x

1
,2, x

n
) .

(C.3)

If we denote by x(t)"(x
1
(t),2,x

n
(t)) a given trajectory whose initial condition is x(0), and by y(t)

another trajectory which is initially close to x(t), and we denote by m(t) the vector

m(t)"y(t)!x(t) , (C.4)

then the evolution of m describes the separation of the two trajectories in phase space. The vector
m is assumed to obey the linearized equations of motion, because it is assumed to be initially small.
These equations are, as can be shown by inserting Eq. (C.4) into the equations of motion (C.3) and
expanding in a power series up to the linear terms

mQ
1

"

n
+
j/1
A
RX

1
Rx

j
B
x(t)

m
j
,

F F

mQ
n

"

n
+
j/1
A
RX

n
Rx

j
B
x(t)

m
j

(C.5)

and are referred to as the tangent dynamics equations,32 which we already wrote in the main text in
the particular case of a standard Hamiltonian system (see Eq. (25)). Note that (C.5) is a system of
linear di!erential equations, whose coe$cients, however, depend on time. According to de"nition
(C.4), the norm DmD of the vector m, i.e.,

Dm(t)D"C
n
+
i/1

m2
i
(t)D

1@2
(C.6)
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measures the distance of the two trajectories as a function of t. If the trajectory x(t) is unstable, all its
perturbations grow exponentially, so that Dm(t)DJexp(jt). If the elements of the Jacobian matrix
RX

i
/Rx

j
, which are the coe$cients of the linear equations (C.5), were either constant or periodic, it

would be possible to solve the system, but, since the Jacobian matrix depends on the trajectory x(t),
its entries are in general neither constant nor periodic, so that the rate of exponential divergence
varies with time. Therefore, one introduces an asymptotic rate of exponential growth of m as the
Lyapunov exponent j

j"lim
t?=

1
t

log
Dm(t)D
Dm(0)D

, (C.7)

which measures the degree of instability of a trajectory: if j is positive, the trajectory is unstable
with a characteristic time j~1. In principle, j depends on both the initial values of x, x(0), and of
m, m(0). However, Oseledec\ [132] has shown that limit (C.7) exists, is "nite and can assume only one
of the n values

j
1
4j

2
424j

n
. (C.8)

The set Mj
i
N is the called Lyapunov spectrum. The exponent j de"ned in (C.7) takes the n di!erent

values of the spectrum as the initial condition m in the tangent space ¹
x(0)

M is varied; the latter
admits a decomposition in linear subspaces

¹
x(0)

M"E
1
=E

2
=2=E

n
(C.9)

and each j
i
is associated with the corresponding subspace E

i
, in that a vector m(0)3E

i
will exponen-

tially grow with the exponent j
i
. If there exists on the phase space M a probability measure k, which

is ergodic and invariant for the dynamics on M, then the numbers j
i
do not depend on the initial

condition x(0), apart from a possible subset of initial conditions of measure zero with respect to k.
In practice, the evolution of the norm of a tangent vector is sensitive only to the "rst } the largest
} exponent, because a generic initial vector m(0) will have a nonvanishing component in the
E
1

subspace, so that the largest exponent j
1

will always dominate in the long-time limit: choosing
m at random with respect to a uniform distribution we have j"j

1
with probability one. This

means that Eq. (C.7) provides a practical de"nition for the largest Lyapunov exponent j
1
, which we

have always denoted simply by j in the main text.
Let us now apply the above to a standard Hamiltonian system, whose Hamiltonian is of the

form (1); the dimension of the phase space is n"2N, and the equations of motion (C.3) are now
Hamilton's equations
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(C.10)
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and also the linearized dynamics (C.5) can be cast in the canonical form
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B
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m
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(C.11)

This equation was already introduced as Eq. (25) in Section 3, and is usually referred to as the
tangent dynamics equation for Hamiltonian systems. To measure the largest Lyapunov exponent
j in a numerical simulation, one integrates numerically both Eqs. (C.10) and (C.11), and then makes
use of de"nition (C.7), which can be rewritten, in this case, as

j"lim
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1
t

log
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1
(t)#2#m2

N
(t)#mQ 2

1
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, (C.12)

where we have used that mQ
i
"m

i`N
(see Eq. (C.11)). More precisely, in a numerical simulation one

uses the discretized version of Eq. (C.12), i.e.,

j" lim
m?=

1
m

m
+
i/1

1
*t

log
Dm(i*t#*t)D

Dm(i*t)D
, (C.13)

where after a given number of time steps *t, the value of DmD has to be renormalized to a "xed value,
in order to avoid over#ow [133].

De"nition (C.7) does not allow one to measure the other exponents of the Lyapunov spectrum.
To measure them, one has to observe that they can be related to the growth of volumes in the
tangent space. A two-dimensional area <

2
in the tangent space, spanned by two linearly indepen-

dent tangent vectors m(1) and m(2), will expand according to

<
2
(t)Jexp[(j

1
#j

2
)t] , (C.14)

a three-dimensional volume, as

<
3
(t)Jexp[(j

1
#j

2
#j

3
)t] , (C.15)

and so on, so that, choosing k4n linearly independent and normalized vectors m(1), m(2),2, m(k)3
¹

x
M we obtain

lim
t?=

1
t
logDm(1)(t)'m(2)(t)'2' m(k)(t)D"

k
+
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j
i
. (C.16)
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Therefore algorithm (C.13) can be generalized to obtain an algorithm to compute numerically the
whole Lyapunov spectrum [133]. However, such a computation is very hard when the number N
is large.

The sum of all the n Lyapunov exponents in the Lyapunov spectrum, +n
i/1

j
i
, measures the

expansion rate of n-volumes in phase space. Therefore, for a Hamiltonian system

2N
+
i/1

j
i
"0 , (C.17)

because volumes in phase space are conserved. In addition, for Hamiltonian systems a result
stronger than (C.17) holds, i.e., there is a symmetry in the Lyapunov spectrum such that

j
i
"!j

2N~i`1
. (C.18)

Eq. (C.18) for Hamiltonian systems is a consequence of the symplectic structure of the Hamilton's
equations [134], however it has been recently generalized to a class of non-Hamiltonian systems
[135].

The numerical integration of the Eqs. (C.5) and the consequent measure of j } or of the spectrum
Mj

i
N when it is possible in practice } is the standard technique to characterize Hamiltonian chaotic

dynamics. An operative de"nition of a chaotic dynamical system can be stated as follows: a system
is chaotic if it has at least one positive and one negative Lyapunov exponent. In fact, this ensures
that the system shows (almost everywhere with respect to the ergodic measure k used to de"ne the
Lyapunov exponents) the distinctive features of chaos as described in the example of the forced
pendulum. In fact, the presence of a positive exponent ensures the presence of a exponential
divergence of nearby orbits, and the presence of a negative one ensures that they also fold and mix
in a very complicated way, so that they can produce those structures we refrred to as `chaotic seasa.
However, as long as autonomous Hamiltonian systems are considered, the anti-symmetry of
spectrum (C.18) ensures that the presence of a positive exponent implies the presence of a negative
one with the same absolute value, so that a single (the largest) positive exponent is su$cient to have
chaos; on the contrary, if the largest exponent vanishes the dynamics will be regular. These facts,
together with that the largest Lyapunov exponent j measures the smallest instability time scale,
show how natural the use of the value of j is to measure chaos in such systems.

It is important to specify with respect to what invariant ergodic measure k the Lyapunov
exponents are de"ned: this may be also a d-measure concentrated on a single trajectory, in which
case we could speak of a chaotic trajectory rather than of a chaotic system. In Hamiltonian systems
with a large number of degrees of freedom we expect the microcanonical measure of the chaotic
regions to be overwhelmingly larger than the measure of the regular regions; the existence of these
regular regions is ensured } at least as long as the system is not too far from an integrable limit } by
the Kol'mogorov}Arnol'd}Moser (KAM) theorem [57]. However, from a practical point of view
the measure relevant for the de"nition of the Lyapunov exponent is indeed the microcanonical one.
Numerical experiments are in agreement with this expectation for large systems, since no relevant
dependence of the Lyapunov exponent on the initial conditions has been detected, and this is the
reason why in the main text we have never referred explicitly to any dependence of j on k, treating
the Lyapunov exponent as any other `thermodynamica observable. Nevertheless, for small systems
(especially N"2 which is the best known case) the simulations show that the measure of the
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chaotic regions may be very small in a very large energy range, so that in that case one cannot
speak of a truly chaotic system but only of a system in which chaotic and regular regions are
simultaneously present (these systems are often referred to as mixed systems, as they are in between
completely chaotic and regular ones).

Since we are interested in large systems, up to the thermodynamic limit, a number of
questions naturally arises: what is the behaviour of the Lyapunov exponents as n increases;
does a thermodynamic limit exist for the Lyapunov spectrum, etc. Numerical results [136]
have shown that as nPR the Lyapunov spectrum Mj

i
N appears indeed to converge to a well-

behaved function

j(x)" lim
n?=

j
xn

. (C.19)

The function j(x) is a non-increasing function of x3[0, 1]. Some rigorous work in this respect has
been recently done by Sinai [137]. The existence of a limiting Lyapunov spectrum in the
thermodynamic limit has many important consequences that we will not review here; a good
discussion can be found in Ref. [134]. We only want to remark here that the existence of
a thermodynamic limit for the Lyapunov spectrum implies that the largest Lyapunov exponent is
expected to behave as an intensive quantity as N increases.

Appendix D. The stochastic oscillator equation

In the following, we will brie#y describe how to cope with the stochastic oscillator problem
which we encountered in Section 4.1.3. The discussion closely follows Van Kampen [67] where all
the details can be found.

A stochastic di!erential equation can be put in the general form

F(x,x5 , xK ,2,X)"0 , (D.1)

where F is an assigned function and the variable X is a random process, de"ned by a mean,
a standard deviation and an autocorrelation function. A function m(X) is a solution of this equation,
if F(m(X),X)"0 ∀X. If Eq. (D.1) is linear of order n, it is written as

u5 "A(t,X)u , (D.2)

where

u"A
u
1

u
2

u
3
F

u
n

B"A
x

x5

xK

F

x(n)
B (D.3)

and A is an n]n matrix whose elements Akl(t) depend randomly on time.
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For the purposes of our work, we are interested in the evolution of the quantities uluk , rather
than of the uk 's themselves. The products ukul 's obey the di!erential equation

d
dt

(uluk )"+
k,j

AI lk,kj(t)(ukuj) , (D.4)

where

AI lk,kj"Alkdkj#dlkAkj . (D.5)

However, both Eqs. (D.2) and (D.4) have exactly the same form and can be solved using the same
procedure, so that we will "rst illustrate such a procedure in general. Therefore in the following
formulae, u refers to a vector whose components are either the uk 's or the ukul 's, and A denotes
either the matrix A in Eq. (D.2) or the matrix AI whose elements are given by Eq. (D.5), respectively.
Then, we will apply this procedure to the case of the stochastic harmonic oscillator.

Now, solving a linear stochastic di!erential equation means determining the evolution of the
average of u(t), Su(t)T, where the average is carried over all the realizations of the process. Let us
consider the matrix A as the sum

A(t,X)"A
0
(t)#aA

1
(t,X) , (D.6)

where the "rst term is X-independent and the second one is randomly #uctuating with zero mean.
Let us also assume that A

0
is time-independent. If the parameter a } which determines the

#uctuation amplitude } is small we can treat Eq. (D.2) by means of a perturbation expansion. It is
convenient to use the interaction representation, so that we put

u(t)"exp(A
0
t)*(t) (D.7)

and

A
1
(t)"exp(A

0
t)*(t)exp(!A

0
t) . (D.8)

Formally, one is then led to a Dyson expansion for the solution *(t). Then, going back to the
previous variables and averaging, the second-order approximation gives

d
dt

Su(t)T"GA
0
#a2P

`=

0

SA
1
(t) exp(A

0
q)A

1
(t!q)T exp(!A

0
q) dqHSu(t)T . (D.9)

Let us remark that, if the stochastic process X is Gaussian, Eq. (D.9) is more than a second order
approximation: it is exact. In fact, the Dyson series can be written in compact form as

Su(t)T"¹CTexpAP
t

0

A(t@) dt@BUDSu(0)T , (D.10)

where ¹[2] stands for a time-ordered product. According to Wick's procedure we can rewrite
Eq. (D.10) as a cumulant expansion, and when the cumulants of higher than the second order
vanish (as in the case of a Gaussian process) one can easily show that Eq. (D.9) is exact.

We now apply this general approach to the case of interest for the main text, i.e., to the stochastic
harmonic oscillator equation, which is the the second-order linear stochastic di!erential equation
given by

xK#X(t)x"0 , (D.11)
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where X(t) is the random squared frequency, X"X
0
#pXg(t), where X

0
is the mean of X(t), pX is

the amplitude of the #uctuations, and g(t) is a stochastic process with zero mean. In this case,
Eq. (D.2) has the form

d
dtA

x

x5 B"A
0 1

!X 0BA
x

x5 B . (D.12)

In particular, we are interested in obtaining the averaged equation of motion for the second
moments. Using Eqs. (D.5) and (D.12), one "nds that Eq. (D.4) becomes

d
dtA

x2

x5 2

xx5 B"A
0 0 2

0 0 !2X

!X 1 0 BA
x2

x5 2

xx5 B"AA
x2

x5 2

xx5 B . (D.13)

Like in Eq. (D.6), the matrix A splits into

A(t)"A
0
#pXg(t)A

1
"A

0 0 2

0 0 !2X
0

!X
0

1 0 B#pXg(t)A
0 0 0

0 0 !2

!1 0 0 B , (D.14)

so that the equation for the averages becomes

d
dtA

Sx2T

Sx5 2T

Sxx5 TB"GA
0
#p2XP

`=

0

Sg(t)g(t!t@)TB(t@) dt@HA
Sx2T

Sx5 2T

Sxx5 TB , (D.15)

where B(t)"A
1

exp(A
0
t)A

1
exp(!A

0
t).

When the process g(t) is Gaussian and d-correlated, Eq. (D.15) is exact, and the integral can be
computed explicitly: writing Sg(t)g(t!t@)T"qd(t@), where q is the correlation time scale of the
random process, we obtain

d
dtA

Sx2T

Sx5 2T

Sxx5 TB"GA
0
#

p2Xq
2

B(0)HA
Sx2T

Sx5 2T

Sxx5 TB . (D.16)

From the de"nition of B(t) it follows then that B(0)"A2
1
, and by an easy calculation we "nd

A
0
#p2XqA2

1
"A

0 0 2

p2Xq 0 !2X
0

!X
0

1 0 B (D.17)

which is the result used in Section 4.1.3.
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